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1 Introduction

In FY2018 through FY2020, NA-22, the Defense Nuclear Nonproliferation Research and Development Pro-
gram, funded a Data Science project to develop and implement statistical methodology to effectively host
data competitions with the goal of leveraging the opportunity provided by crowdsourcing. By accessing and
engaging expertise from a broader research community, there is an opportunity to attract innovative solutions
from a variety of different research disciplines to advance the ability to solve important non-proliferation
problems. This report summarizes the key results of this project after hosting two data competitions fo-
cused on urban radiation detection. The first competition was focused on attracting participants from the
U.S. national laboratories, while the second, hosted by TopCoder, was open to the broader international
community and awarded prize money to the top 10 competitors.

At the start of the project, there was strong interest from NA-22 to explore and develop the capability
to host data competitions as a means of leveraging the broader community to solve important nuclear
nonproliferation problems. Having a standard data set on which to compare different approaches based on
clearly defined criteria was desirable to be able to evaluate the state of solutions for important problems.
Initially, it was not clear that it would even be possible logistically and bureaucratically to host a competition
with an international field of competitors and to award the prize money needed to attract solutions from
top competitors. Happily, a path to host the competitions was ultimately found that allowed this powerful
accelerator of improvements to be leveraged.

The motivation for hosting data competitions included:

1. The ability to attract innovative solutions from a diverse audience with varied backgrounds and exper-
tise. It has been shown for centuries that encouraging broader participation can lead to accelerated
improvement through ground-breaking innovative solutions that may have eluded the traditional sub-
ject matter experts [1]. In addition, many innovations come at the cross-section of different disciplines
[2] and so the careful study of the competition solutions affords an opportunity to leverage these in-
terdisciplinary advances and create a combined solution that leverages the best features of multiple
individual solutions.

2. A fair competition with formal structure, carefully thought out objectives and a well-constructed data
set provides a standardized means of comparison of different solutions. This allows a foundation for
understanding the relative strengths and weaknesses of each, as well as the opportunity to understand
the drivers of difficulty in the problem space.

3. The competitive fervor that a data competition inspires can drive rapidly accelerated improvements.
By posting a leaderboard with real-time scoring, competitors are often more enthusiastic to work on
improvements and the rate of advancement moves faster than in most other traditional development
scenarios.

4. By exposing a broader community to interesting problems, new researchers including students with
different types of expertise become aware of the focus of the data competition. This can be a possible
recruitment tool or enable new interdisciplinary collaborations. For the urban radiological search
competition, we were able to introduce this important class of problems to a large number of interested
experts, with the hope for possible future engagement in this arena.

5. In addition, there was initially skepticism from those working in radiation detection that data science
methods, such as machine learning, would be able to compete with domain knowledge expertise to
adequately solve the problems of interest. The competition provided an opportunity to quantitatively
compare different approaches to solving this well-established problem and gain understanding about
the strengths and weaknesses of data-centric approaches and domain knowledge based methods.

The goal of the competition was to explore performance for detecting, identifying and locating six different
radioactive sources in the simulated urban environment provided by the MUSE data generation capability.
This scope was determined by a team of experts at ORNL based on the ability to generate suitable data,
the recommended upper bound for the size of the data set provided to the competitors, and the ability to
model the results with sufficient sample sizes to evaluate and test each of the questions of interest.
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Data were generated across a wide variety of different scenarios, and the inputs for these scenarios
were chosen to mimic the breadth of urban environments seen in practice. The choice of which inputs to
manipulate, and which ranges to consider were based on factors known to impact performance of radiation
search algorithms and what conditions were likely to be encountered in U.S. urban environments.

The data were generated using MAVRIC[3] a stochastic simulation code developed at Oak Ridge National
Laboratory distributed as part of the SCALE package[4]. The input factors varied across the competition
data were divided into several categories: radiological background characteristics, radiological source types
and configurations, and detector movement. To create a diverse radiological background, multiple versions
of urban streets were used with different configurations and compositions for the buildings and features.
Five different radioactive source types were included, and shielding around the sources was varied. A sixth
source comprised of the combination of two of the sources (99mTc + HEU) was also included. These sources
range from weapons grade materials to isotopes common in medical or industrial applications:

1. HEU: Highly enriched uranium

2. WGPu: Weapons grade plutonium

3. 131I: Iodine, a medical isotope

4. 60Co: Cobalt, an industrial isotope

5. 99mTc: Technetium, a medical isotope

6. A combination of HEU and 99mTc

In addition, some characteristics of the detector’s movement were varied. The speed of the detector
moving along the urban street was fixed throughout a run, but was varied between runs across the range
of anticipated operational use. The speeds considered ranged from slow walking speed to moderate driving
speed.

To keep downloads and manipulation of the data manageable for the competitors, the target total file
size for the zipped data was 10 GB (a recommended ceiling by several data competition websites). The data
set consisted of approximately 10000 “runs” in the training set, and approximately 16000 runs in the test
set (with 42% in the public test set, and 58% in the private set). The public test data are used to provide a
real time score during the competition. The private test data are used to determine the final ranking of the
algorithms, but no feedback on performance on this subset of data is provided until after the competition
has concluded.

For each run in the test set, the competitor specifies (a) whether a source is present (many of the runs did
not contain any source), (b) which of the sources it is and (c) at what time during the run was the detector
closest to the source. Additional details about the competition are available [5] [6].

The first competition that focused on government competitors, https://datacompetitions.lbl.gov/
competition/1/, ran from January to May of 2018 and attracted 16 teams, comprising 25 federally funded
researchers who contributed a total of 1016 submissions throughout the duration of the competition.

The second competition, https://www.topcoder.com/challenges/30085346, was open for any partic-
ipants and was hosted by a professional data competition provider, TopCoder. It ran from March to April
2019 and attracted 1614 submissions from 71 competitors. The participants in this second competition came
from many different countries and had diverse technical backgrounds.

Figure 1 shows the results of the TopCoder competition. The final prizes were distributed based on the
competitors’ scores on the private portion of the test set. Scores based on the private subset of the test data
were available in real time to the competitors while the competition was running. The TopCoder platform
facilitated access to a diverse, experienced and international set of competitors.

1.1 Problem Space

The goal of the competition was to focus on algorithms that received data from a specific detector moving
through an urban environment. A successful algorithm is able to (1) detect when an anomaly from the
background has occurred, (2) identify which of several alternative source types it is, and (3) locate the time
(or location) when the detector was closest to the detected source.
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Figure 1: Leaderboard for the TopCoder competition with the public and private scores for the top 10
prizewinners.

More formally, nuclear search operators are tasked with finding faint signatures of illicit nuclear sources in
strongly varying background environments Radiological backgrounds a most typically due to the radioactive
decay of naturally occurring radiological material (NORM), of which potassium-40 (40K), uranium (U)
and its radioactive daughters, and thorium (Th) and its daughters, or KUT. In an urban search scenario,
operators depend on real-time algorithms running on their detector units to alert them to the presence of
radioactive sources while driving or walking through city streets. When detected, the operators respond to
find and verify the origin of the source. False positives, an alert that there is a radioactive source present
when it is not, cost time and response effort. For algorithms to be successfully deployed, the number of
false positives must be bounded to reduce the chance of alarm-fatigue. Too many false positives could
cause operators to lose confidence in the algorithm and begin ignore alerts at important times. Alternately,
false negatives, when no alarm registers when threat sources are actually present, could have disastrous
consequences if dangerous situations go unaddressed. Therefore the desired solutions to the urban radiation
search problem require an appropriate balance between false positives and false negatives. It is also important
when comparing alternative solutions to be able to understanding algorithm sensitivity and false positive
rates when designing a search operation.

The data competitions provide a formal mechanism to test radiological search algorithms against a set of
synthetic data, enabling the development, comparison and evaluation the algorithms and their approaches.

The data set contains representative time series detector response functions of a 2 in.×4 in.×16 in.
NaI(Tl) detector moving through a city street. Gamma-ray detectors, specifically NaI(Tl) (thalium-doped
sodium iodide) detectors, are commonly used for urban radiation surveillance because of their low cost and
high gamma-ray detection efficiency. Many illicit sources of interest, including industrial sources and special
nuclear material, emit gamma rays as they undergo radioactive decay. Gamma rays are able to travel long
distances and penetrate through dense material, making them ideal signatures for detection during search
operations. Radioactive isotopes can be identified by the characteristic gamma rays they emit. Because
shielding, or dense material around the source, attenuates gamma rays and can dramatically change the
spectral shape of the gamma-ray flux, radiation source search algorithms must be robust to many shielding
configurations to correctly detect and correctly identify illicit sources. In addition, discerning between gamma
rays emitted by benign isotopes (such as medical or industrial isotopes) and illicit sources (such as special
nuclear material) is important to guide the appropriate response and to prevent unnecessary overreactions.
Hence detection and identification based on data obtained from a NaI(Tl) detector is a natural focus for a
data competition.

To generate a realistic background against which sources can be introduced, the stochastic simulation
code focused on generating data representative of the KUT present in everyday materials such as brick,
concrete, and asphalt. KUT activities are highly variable in an urban search environment due to the fact
that nearby buildings can emit dramatically different background signatures. The environment considered
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for the data competition was simplified to not include clutter, such as people, cars or other mobile objects.
Only key stationary objects on the street were incorporated.

To spur innovation in radiation detection algorithms, a large data set, based on Monte Carlo radiation
transport simulations, with realistic gamma-ray backgrounds and simulated sources was developed. A key
advantage of using the MUSE stochastic simulation model is that the backgrounds are generated using
Monte Carlo radiation transport simulations, meaning the background composition and variability can be
easily modified. Having a diverse set of background that is representative of a variety of locations, regions,
layouts and the resulting variability is important for the evaluation of different algorithms’ performance,
considering the known difficulty in detecting weak source signals relative to urban background. This approach
different from other efforts to generate radiological source terms which used experimental data, Monte Carlo
simulations [7], detector response simulation codes (like GADRAS) [8] and/or solid angle calculations [9].
Source terms are usually injected into a measured background or a simple model [10].

A frequent problem with observed data sets is that it is difficult to know what ground truth is. Hence
a significant advantage of using simulated data is that everything in the scene is known. As a result,
high-quality labels can be applied to each synthetic data set to train and evaluate algorithms. Moreover,
the benefit of a unified data set for comparison enables multiple algorithms to be evaluated on a common
data set to understand and characterize different algorithms’ performance in a variety of conditions such as
detector speed, background variability, source type, and intensity.

By combining flexible data generation code with newly developed statistical design methods, we were able
to generate a structured set of data to be presented to the competitors [5]. The post-competition analysis
methods provide opportunities for both exploratory data analysis and model-based methods to formalize
relationships between different environmental and source configurations [6].

1.2 Desirable Characteristics of the Competition Data Set

In generating the data to be presented to the competitors, it was important that the data had the right
characteristics to drive innovation to improve objectives of maximum importance. It was also important that
the data had sufficient quality and volume to be able to interpret the results and determine how the different
algorithms compared for the various objectives of detect, identify and locate. The key characteristics that
were sought in the data set included the following features:

Data set size Adequate size to be able to evaluate all of the effects from different inputs of interest, but
of manageable size to not deter participation by many competitors with diverse backgrounds.

Format of data The structure of the data needed to match what experts in radiation detection are fa-
miliar with, but also allow for an easy learning curve for participants who are not already familiar
with this area. We took care to provide supporting background materials to competitors to make it
straightforward for those new to urban radiation detection problems to learn sufficient background to
participate, as this will encourage a diverse competitor pool.

Space-Filling The data sets should provide coverage throughout the input space of interest. The input
space is defined as the set of combinations of all of the inputs of interest that the competition seeks
to explore and characterize during the competition. The goal is to have the data set fill the ranges of
each of the inputs adequately to support model estimation for all input factors. Since the competition
explored multiple sources, it is possible to think about the complete test data set as a set of 7 separate
data sets - one for each source, plus the collection of no source runs. An ideal overall test data set
has adequate space filling for each of these data sets. A final step before the data are presented to the
competitors is to randomize the order of the runs in the overall data set.

Realism To the extent possible from the simulator, the data should be presented in a way that matches how
solutions will be deployed in practice. The nature of competitions with the full data set being available
at the start of the competition, and the ability to resubmit solutions to receive feedback on performance
are both constraints on being able to fully realize this objective. In addition, we recognized early that
it would not be possible to adequately explore all aspects of radiation detection in a single competition,
so intentional choices were made to bound the problem. For example, omitting clutter and detector
variability helped to limit the dimensionality of the input space.
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Level of Difficulty The data sets (training, public test and private test) should target regions that will
enable differentiation between competitor performance. this suggests that the ideal data set would
avoid too much data in regions where everyone is expected to get the answer correct, or everyone is
expected to get it wrong. In addition, new methodology was developed to allow creation of the three
data sets to show a progression from an emphasis on the easiest versions of the problem (training) to
hardest (private test), as this enables the host to assess the ability of algorithms to adapt to new more
challenging scenarios. This approach allows for the host to gain information about the algorithms’
ability to solve new scenarios that represent an extrapolation to new cases in the input space.

Avoid Exploitable Artifacts Since the competitors’ primary objective it to win prize money, it is impor-
tant to present the data in a way that avoids artifacts that can be exploited by the competitors to
answer the question of interest in a way that does not translate into an operational solution.

Structure of Leaderboard The leaderboard scoring metric will drive improvements in different areas by
rewarding certain characteristics in the solutions. It is critical that the leaderboard scoring appropri-
ately penalizes and rewards characteristics in a way that is proportionate to how much they are valued
in the operational solution. For our competition, it was important to find the right balance between
penalizing the false positive and false negative rates.

1.3 Report Organization

This report provides a detailed summary of key outcomes and learning from the “Developing and Analyzing
Competitions for OPD” project. Section 2 provides a summary of the current state of radiation detection in
an urban environment. Section 3 gives an overview of the radiation transport simulations used to generate
the data used in the competition. Section 4 contains an overview of how the format of the data for each of the
runs in the competition was created, how the input space of interest was explored with different emphases
for the training, public and private test data sets, and the initial testing of data and the competition
concept through the government-only competition. Section 5 provides details about the steps required
for hosting a data competition, including the development of competition goals, constructing data sets to
match the chosen goals and constructing a realistic leaderboard scoring mechanism to reflect the relative
priorities of multiple competition objectives. It also summarizes interactions with an established hosting web
company, running the competition, and tools available in a post-competition analysis to extract maximal
information and understanding from the results. Section 6 provides results from the open international
TopCoder competition, with numerical and graphical summaries for different aspects of the top competitors’
algorithms. The section also includes comparisons between the winning algorithms by considering many
aspects of the detect, identify and locate objectives for each of the 6 sources considered. In addition, some
of the highlights of the new statistical methods developed as part of the project are described. Section 7
provides details about the approaches and inner workings of the top algorithms. Some of the methods that
were used are discussed, as well as an assessment of how well the methods might be adapted to operational
scenarios. Section 8 provides some final conclusions, lessons learned from the competition, and discussion
about future research and development recommendations.
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2 Current State of Radiation Detection

Here we will review the landscape of algorithms and approaches that are relevant to the gamma-ray detection
problem at issue in the data competition, that is, the problem of urban search. We will begin with background
information about gamma-ray physics and detectors (Section 2.1), then perform a survey of different methods
(Section 2.2), and finally conclude with a summary (Section 2.3).

2.1 Gamma-ray physics

The physics of how a gamma ray goes from impinging on a detector to being recorded as an event by the data
acquisition system is complex, yet fundamental to understanding the signals that any detection algorithm
needs to grapple with. Here we will review the physics of gamma-ray interactions and the physical processes
used to convert their signatures into electronic data when using different kinds of detector materials.

2.1.1 Gamma-ray Interactions with Matter

Gamma rays primarily interact with matter via three processes: 1) photoelectric effect, 2) Compton scat-
tering, and 3) pair production [11, 12]. See Figure 2 (a)-(c) for cartoons of each. For photoelectric and
Compton processes, gamma rays typically interact with electrons bound in atomic matter in the environ-
ment. In pair production, the photon annihilates in the electric field (typically near an atomic nucleus) to
create an electron-positron pair.

Figure 2: Cartoons of (a) photoelectric interaction, all of the gamma-ray energy is transferred to an electron,
(b) Compton scattering, where only part of the gamma-ray energy is transferred and (c) pair production, the
gamma ray interacts in the electric field to create an electron-positron pair and transfers some momentum to
the nucleus. (d) Cartoon of gamma-ray interaction probability with matter as a function of photon energy
and atomic number.

In photoelectric interactions, all of the photon energy, hν, is transferred a bound atomic electron. The
result is that the parent atom is ionized, and the vacancy in the electronic orbit of the atom is quickly
filled by electrons in higher-energy orbitals, releasing X-rays in the process. The final energy of the ionized
electron is hν - φ, where φ is the binding energy of the atomic orbital. Photoelectric interactions are
dominant at lower energies (typically below about 1 MeV for NaI(Tl)) but quickly become less probable at
higher energies [13]. See Figure 2d for a schematic describing the most probable gamma-ray interaction type
as a function of atomic number and energy. Photoelectric interactions are directly useful for gamma-ray
spectroscopy, producing photoelectric peaks or “photopeaks” in gamma-ray spectra, which can be used to
identify the parent radionuclide.

In Compton scattering, only part of the gamma-ray energy is transferred to the electron, resulting in
a lower energy gamma ray and an excited electron. The cross section for this interaction is dominant in
NaI(Tl) between about 1 and 7 MeV. Because only part of the gamma-ray energy is imparted, this interaction
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is less useful for gamma-ray spectroscopy, but in larger detector volumes (such as 2x4x16” NaI(Tl)) it is
not uncommon for the Compton scattered gamma ray to undergo multiple interactions within the detector,
resulting in full energy depositions that are difficult to distinguish from photoelectric events. Compton
scattering can be used to infer position information on the source usually by determining the angle of
photon deflection between two successive interactions, but the necessary information to enable this type of
inference was not provided to competitors in this project. However, in gamma-ray spectroscopy, Compton
scattering can produce noise or the “Compton continuum” which masks photopeaks in spectra.

Pair production only becomes possible at photon energies greater than 1022 keV (the sum of the elec-
tron/positron rest masses) and becomes the dominant interaction in NaI(Tl) at 7 MeV and beyond. Once
the positron slows down, it will annihilate with an electron producing two 511 keV gamma rays. If this
process happens in material outside of the detector, these 511 keV gamma rays can be detected producing a
photopeak in the detector. If pair production occurs inside of a gamma-ray detector, the energy deposited
by the electron-positron pair will also be detected and the 511 keV photons produced by electron-positron
annihilation may also be detected via photoelectric interaction or Compton scattering. If both 511 keV
photons escape, the result is a peak at hν - 1022 keV. If one 511 keV photon interacts via the photoelectric
interaction the result is a peak at hν - 511 keV. If either of the 511 keV photons interact via Compton scat-
tering, they are added to the Compton continuum producing no photopeaks. In gamma-ray spectroscopy,
pair production is common when high energy gamma ray are produced after neutron capture or inelastic
neutron scattering with matter. The presence of a 511 keV photopeak and photopeaks at hν - 1022 keV and
hν - 511 keV are typically signs of neutron sources.

2.1.2 Gamma-ray Detectors

Gamma-ray detectors used for non-proliferation activities generally fall into three categories: 1) organic
scintillators, 2) inorganic scintillators and 3) semiconductor detectors. Scintillator detectors produce many
photons per gamma-ray interaction in the visible to ultraviolet bands. These photons are collected and
converted to a voltage pulse by some kind of photo-sensor coupled to electron multiplication electronics
(typically by photomultiplier tubes or more recently silicon photomultiplers), converting the light into an
electronic signal. The integral of this signal is proportional to the number of low energy scintillation pho-
tons, which is also proportional the the energy deposited by the gamma-ray interaction. In semiconductor
detectors, ionization by secondary electrons create many electron-hole pairs in the material. The number of
electron-hole pairs is proportional to the incident gamma-ray energy. The net charge collected is therefore
proportional to the energy deposited by the gamma ray.

Organic scintillators are composed of organic molecules, typically in the form of a crystal (e.g., stilbene),
liquid (e.g., Eljen Technologies EJ-301), or a plastic (e.g., polyvinyltoluene) [11, 12]. Plastic and liquid
organic scintillators can be manufactured to a wide variety of geometries and can be made into fairly large
detectors, while crystal scintillators tend to be smaller. In organic scintillators, gamma rays ionize electrons
in organic molecules causing florescence as the molecule relaxes to its ground state. The time profile is de-
pendent on the incident ionizing particle type, so pulse shape discrimination can be used to detect different
kinds of radiation in a single detector. Unfortunately, organic scintillators are not useful to gamma-ray spec-
troscopy because they have low atomic numbers, meaning that Compton-scattering interactions dominate
(see Figure 2 (d)). Therefore gamma rays tend to leave the scintillator without undergoing photoelectric
absorption so photopeaks are typically not present in the spectrum.

Inorganic scintillators are typically single crystals which may include dopants to modify electron energy
band structure and to introduce trapping sites for ionized electrons. Scintillation in these crystals is tied
to the electron energy band structure of the entire crystalline structure, instead of exciting molecules as in
organic scintillators. When a gamma-ray interacts with an electron and it becomes excited, as it relaxes
it produces scintillated light, usually in the visible to ultraviolet regime. Typical examples of inorganic
scintillators include NaI(Tl), CsI, LaBr and SrI2. Photoelectric interactions are favored, at least up to
1 MeV in these materials, so they are good candidates for gamma-ray spectroscopy. The energy resolution,
or width of the photopeak, varies from material to material, and typically most inorganic scintillators have
low to moderate energy resolution. Low to moderate energy resolution makes resolving photopeaks that are
close together in energy difficult. The maximum size of inorganic scintillator crystals varies widely between
materials, where NaI(Tl) can be reliably made in 2-in×4-in×16-in geometries, but LaBr has a maximum size
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of 2-in diameter by 2-in height cylinders.
Semiconductor detectors are typically single crystals of semiconducting material, meaning there is a

well defined band gap between conduction and valance bands. This band gap needs to be wide enough to
minimize the probability that thermal fluctuations elevate valance band electrons into the conduction band,
a potential source of noise. If the band gap is not sufficiently wide, these materials need to be cooled, to
cryogenic temperatures in the case of high purity germanium (HPGe) or room temperature or below in the
case of CdZnTe (CZT). When gamma rays interact with electrons in the semiconductor they are excited from
the valance band to the conduction band and are collected directly via an applied electric field. Typically
semiconductor detectors have moderate to high energy resolution, because ionized electrons are detected
directly without the need for scintillation. However, these devices are usually small (about 1 cm3 for CdTe
detectors) so their detection efficiency is low. In addition, some have to be cooled to cryogenic temperatures
making them more expensive and harder to carry.

2.2 Gamma-ray Detection and Identification Algorithms

Gamma-ray detection and identification algorithms seek to take the photon events recorded by a gamma-ray
detector and convert them into information about whether the current radiation environment is somehow
anomalous when compared with background conditions, and if so what isotope(s) is causing the anomaly.
The particular detection problem posed by the data competition, that of detecting and identifying a lone
(or “orphan”) radioactive source using ground-based mobile gamma-ray detectors, has been studied for
many years (e.g., [14, 15, 16]). The fundamental difficulty of the detection and identification problem
arises from the highly variable backgrounds often encountered by mobile systems, the variety of potential
spectral shapes of anomalous sources, and the limitations of counting statistics [16]. We will restrict this
discussion to algorithms that take in only photon event time and energy data, such as was provided to the
competitors in the competition, and not position or other contextual data. We will also restrict the discussion
of identification to the context where the anomalous isotope is present at low signal-to-noise (SNR), instead
of the general problem of identifying the sources of many gamma-rays signatures in spectra, although such
studies are related (Section 2.2.5 will briefly touch on these methods).

The problem of gamma-ray anomaly detection is made difficult by the complexity of the natural gamma-
ray background, primarily due to the presence of 40K, the 238U series, and the 232Th series (the KUT
backgrounds), which are present in soil and building materials and whose concentrations may vary by orders
of magnitude [17]. Other background contributions are from 222Rn progeny in the atmosphere (222Rn and
its progeny are part of the 238U decay series) and line and continuum emission from cosmic ray interactions
in the atmosphere [18]. In addition to the complexity of the background, the statistical nature of the photon
counting problem adds a level of statistical variability to the problem, which is difficult to disentangle from
the true nature of the shifting background and the presence of any potential nefarious sources. In addition,
because of Compton scattering both in the environment and in the detector, the anomaly isotopes are
rarely pure photopeaks but contain various amounts of downscatter, making it possible that a given isotopic
anomaly may present itself differently under different physical conditions.

A common feature of detection and identification algorithms is that they must be given some sample
of background data, from which the algorithm will derive a set of parameters to describe the background.
For identification, training spectra that include the specific anomalies to be identified are also likely to be
required so that the algorithm can learn the parameters needed to maximize its sensitivity and specificity for
those particular isotopes. This process of tuning an algorithm with background and source data is typically
called training.

Gamma-ray detection algorithms take many forms, depending on a variety of factors and requirements
for the specific application. A non-exhaustive list of the qualities of different algorithms is the following:

• Whether it operates primarily in the time domain, primarily in the energy domain, or in both domains;

• Whether it performs only anomaly detection, only anomaly identification, whether it simultaneously
performs both tasks, or whether it performs one prior to the other;

• Whether it uses the full spectrum or a portion of the spectrum;
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• How the background is estimated: e.g., is it fixed to an average, predicted using a moving average, or
predicted using nearby spectral regions; and

• How/whether context other than time is used.

Because of the statistical nature of photon counting, most detection algorithms amount to a statistical
test: a particular test statistic is chosen, the distribution of the statistic under background conditions is
estimated through training, and the relevant statistical test is performed (e.g., a χ2 or likelihood ratio test).
Algorithms are distinguished by their choice of statistic, by their methods for estimating the statistic’s
background (or null) distribution, and by their methods for maximizing the signal that particular anomalies
produce in that statistic. In what follows, we will review several detection and identification algorithms,
emphasizing their key design choices, their strengths, and their limitations.

2.2.1 A prototype algorithm for anomaly detection: Gross counts k-sigma

The simplest gamma-ray detection algorithm is gross counts k-sigma (e.g., [19, 20]), and it can be used to
illustrate the basic features of more complex algorithms.

For this algorithm, the measured spectrum is summed across all energies to obtain the gross counts, say
Ni for measurement i. Assuming constant integration time ∆t for simplicity, the average gross counts per
measurement of background (N̄) is calculated from a set of background data. The main assumption of the
method is that the gross counts Ni follow a Gaussian distribution of mean N̄ and some variance var[N ]; if the
distribution is truly governed only by random fluctuations it can be considered Poissonian, then var[N ] = N̄ ,
although other choices could be made, such as the variance of recent measurements. The test statistic for
gross counts k-sigma is the number of standard deviations away from the mean:

zi ≡
Ni − N̄√

var[N ]
, (1)

meaning the zi’s null distribution is a unit normal. When |zi| exceeds a chosen threshold k, the measurement
is deemed anomalous.

Using the null distribution, the threshold k can be set by choosing a desired False Alarm Rate (FAR).
From the FAR and integration time ∆t, k can be calculated by integrating the tails of the unit normal
distribution. For example, a FAR of 1 per 8 h (3.47 × 10−5 s−1) and an integration time of 1 s leads to
a k-sigma threshold of 4.14, so anomalies would need to have approximately “4-sigma” significance in the
common usage.

Unfortunately, these simple assumptions are often violated in situations encountered by mobile spectrom-
eters because the gross counts variability is often governed by shifts in the true underlying distribution, and
therefore are non-Poisson (e.g., Figure 3), so various modifications must be made in the time and energy
domains in order to make it useful.

One modification in the time domain is to use a recent average of the measured gross counts for N̄ and the
associated variance. There are also examples of eschewing the Gaussian distribution altogether and instead
using the empirical distribution of past measurements and comparing it to the distribution of the latest few
measurements using Kolmogorov-Smirnov (KS) or related tests [14, 21].

A modification in the energy domain is to use the gross counts in only a region of the spectrum, not
the entire spectrum. This modification introduces some specificity to desired anomalies, e.g., the region
containing the 137Cs photopeak could be chosen, however the assumption of large mean counts (& 30− 50)
must be maintained if the Gaussian assumption is used, although extension of the test statistic to the Poisson
regime is straightforward. In addition, variability in background isotopes at higher energies can “bleed
down” into the chosen window due to incomplete energy deposition of the background lines (primarily due
to Compton scatter), which will lead to systematic changes in the distribution of counts in that window. For
example, detection of anomalies in a 137Cs photopeak window is greatly improved once one accounts for the
downscatter of 40K into the window [22].

2.2.2 Time-domain anomaly algorithms

Some algorithms for detecting anomalies operate in the time domain only, with little spectral information
used. These algorithms take advantage of the inherently different time evolution of anomalous sources,
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Figure 3: Figure 1 from [19] showing a measured gross count rate and a ±2σ band around the mean gross
count rate for a mobile detector system. The gross count rate in urban search problems typically does not
follow a fixed Gaussian distribution.

whose fluxes generally follow the inverse square law due to their point-like nature, and the time evolution of
the background, which generally arises from distributed areas like buildings and the soil and thus presents
differently from a point source. These algorithms come mainly from the radiation portal monitor (RPM)
literature, which has the benefit of being able to assume relatively constant background rates, but they are
worth examining as a class since the data competition scored approaches based on their ability to identify
the time when an anomaly occurred.

Matched filters in the time domain In [23], the authors compare RPM count rate data to the idealized
profile of a point source passing by a planar detector at a known speed and standoff distance. The idealized
profile is used as a filter, and it is convolved with the count rate data in order to find any times of high
correlation, indicating that a source may be present (e.g., Figure 4).

This method has also been applied to the case of a mobile detector system [24], where the source is
assumed to be stationary but the detector is moving at a known speed. Since the distance to the source is
unknown, unlike in the RPM case, different matched filters are convolved for different source standoffs and
the highest signal is used to determine both the time of closest approach and the most likely standoff.

In more recent work, maximum likelihood was used to find the best-fit point source model in an RPM
context [25]. By fully modeling the Poisson statistics of the problem and utilizing maximum likelihood theory
to determine detection thresholds, they found improved detection capability for low SNR scenarios.

These approaches are sensitive to background variability, which will increase the probability of false
alarms. Often the count rates used are not gross counts but counts in a spectral window of an isotope of
interest (e.g., 137Cs), which may reduce some background variability and gives the approach some limited
ability to perform identification.

Imaging methods Some time-domain algorithms exploit time-dependent point-source signals induced by
collimation. These systems require multiple detectors arranged in a known configuration relative to the
collimator(s). By using even a simple imaging configuration, the time variability of background can be
reduced by such methods because the time signal of a point source presents differently in each detector,
while changes in background appear approximately identical in each detector due to their diffuse (non-point)
origin — thus part of the time filter is encoded in hardware, and some of the time filter must be done in
software (to determine the unknown source standoff). Examples of such systems and algorithms are a mobile
system that used a one-dimensional coded mask [26, 27], and even a simple system where a simple piece of
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Figure 4: Figure 5 from [23] showing a count rate with injected source (dashed line), Poisson-sampled data
(solid line), and correlation coefficient for the matched filter (dotted line).

shielding was placed between two detectors to induce a time-dependent signal [28]. As with the matched
filter approaches, only a region of the spectrum is typically used, adding some sensitivity for particular
isotopes.

2.2.3 Energy-domain anomaly detection and identification methods

There is a large class of algorithms that perform anomaly detection and/or identification for a single spectrum
at a time, that is, considering only the current spectrum’s shape and without considering recent measure-
ments. In general, these algorithms rely on the training data set to develop a model of the background and
then measure the deviation between the measurement and the model. This deviation is used as the anomaly
statistic, which is usually some form of log likelihood ratio. Identification in general is performed by defining
different deviation metrics, one for each kind of anomaly being considered. Although time evolution is not
considered explicitly, time plays an implicit role in these algorithms in the form of the integration time (e.g.,
1-second spectra), which is an important factor in determining their sensitivity.

Region of Interest (ROI) and Censored Energy Window (CEW) The Region of Interest (ROI)
algorithm [29] and more general Censored Energy Window (CEW) algorithm [30] are methods that compare
counts inside a spectral window(s) with a background estimate derived from the spectrum outside that
window(s) (e.g., Figure 5). Both methods are similar to gross counts k-sigma in that the ROI/CEW counts
are assumed to follow a Gaussian distribution with some mean and variance, but the mean and variance of
the signal are estimated from the spectrum itself, not from prior training data. In addition, by focusing on
certain regions of the spectrum, ROI and CEW are designed to be sensitive to specific isotopes and therefore
to provide some measure of identification.

The simplest version of the ROI algorithm consists of one “source” spectral window and two “background”
spectral windows, of equal width to the source window and usually adjacent or nearly adjacent on either
side. For a measured spectrum, the counts in each bin are calculated. The background in the source window
is estimated to be the average of the two background counts, and the variance is the square root of this
estimate. More generally, the ROI algorithm can have multiple source and background windows of different
widths, and regression of a training data set is used to fit the coefficients and offset to maximize the test
statistic when a source is present and force it to have a mean of 0 when the source is not present.

The CEW algorithm [30] generalizes ROI in the following way. The source window becomes a binary
vector (elements are 0 or 1) and the background windows become a non-negative real vector defined so that it
is zero at all the spectral bins where the source window is 1. The source counts are the dot product between
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Figure 5: Figure 3 from [29] showing three ROI windows chosen to detect and identify the 137Cs photopeak
in the central window at 662 keV by using the outer windows to estimate the background in the central
window.

the source vector and the measured spectrum, and the analogous dot product produces the background
estimate. Training data with and without the source of interest present are used to optimize the source
and background windows — the source signal is maximized for data containing the source, while the mean
difference between the source and background counts is zero in data collected when the source is absent.

Matched filters in the energy domain Similar to the matched filters in the time domain (Section 2.2.2),
matched filters are sometimes used to detect and identify particular isotopes in the energy domain alone. As
described in [31, 30], the matched filter can be learned from labeled training data to extract a maximal SNR
signal for each desired isotope. The test statistic is the dot product of the filter with the spectrum weighted
by a covariance matrix obtained from the training data.

Principal Component Analysis (PCA) Principal Component Analysis (PCA) has been used to detect
anomalous spectra in radiation portal monitor (RPM) data [32, 33]. The PCA method learns the dominant
modes of variability across the full spectrum and transforms the spectra into a subspace where anomaly
detection is performed. Although this method has predominantly been applied to RPM data in the published
literature, the method may also be useful for mobile spectrometer data and shares common features with
other full-spectrum methods.

In [33], the training spectra were first divided by the maximum counts in any bin to normalize by intensity,
making this method insensitive to gross count anomalies and only to spectral shape anomalies. The bin-wise
means and variances of the intensity-normalized spectra were calculated and used to transform the data
further to have bin-wise means of 0 and variances of 1. The correlation matrix of the resulting training data
was diagonalized using PCA, and the first k components were retained, where k is selected to optimize the
sensitivity of the algorithm. The spectra to test for anomalies were transformed into the principal component
space, and the Mahalanobis distance between the transformed points and the mean of the training data was
used as an anomaly metric. Figure 6 shows various spectra from the testing set transformed into principal
component space. Notable is that the background spectra cluster around the origin, while different types of
anomalies are clustered farther away. The proximity to a cluster in the transformed space can be used for
anomaly identification [34].
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Figure 6: Figure 5 from [33] showing the testing data transformed into the space spanned by the first three
principal components. The background spectra are clustered around 0 while various anomalies form clusters
away from the origin.

Linear Discriminant Analysis (LDA) Linear discriminant analysis (LDA) is a mathematical method
that produces the optimal linear solution for determining a classifier between two sets of data of any di-
mensionality whose variability is described by normal distributions with equal covariance matrices. As a
radiological detection algorithm, LDA can be trained to classify a set of background spectra from a set
of anomaly spectra, or between background and particular types of anomalies [35, 36]. LDA accomplishes
this by determining a multidimensional surface that maximizes the separation between the classes while
minimizing the variability within each class.

Challenges of developing representative sets for the spectral classes, the fact that LDA will over-train on
non-Gaussian regions, and operational shortcomings when the variability (in each dimension or spectral bin)
differs across the background and anomaly sets have hindered adaption, but the approach was considered and
compared to other discriminant analysis in [37]. Other discriminant analyses such as quadratic discriminant
analysis (QDA) may also be applicable as anomaly detection and identification algorithms, but tend to
have more free parameters, rendering them less easy to train and continue to invoke Gaussian assumptions.
Figure 7 shows a schematic from [37] illustrating how clustering is performed by LDA and QDA.

Figure 7: Figure 2 from [37] showing clusters of measured spectra projected into PCA coefficient space
(left). The spectra are clustered into three groups, and LDA (center) and QDA (right) are used to draw the
separations between the clusters.

Noise-Adjusted Singular Value Decomposition (NASVD) Noise-Adjusted Singular Value Decom-
position (NASVD) [38, 39] is a spectral reconstruction method that has been used in urban search to
decompose the measured spectra into linear combinations of components, some of which were background
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and some of which contained anomalous sources [16]. This algorithm is similar to PCA in that it transforms
spectra into a k-dimensional subspace and examines the resulting data. One innovation suggested by [16]
is to include measured anomalies in the training set so that the NASVD model learns the shape of the
anomalies as well as the background. Identification can then be performed by examining the coefficients of
the components that are found to strongly pattern with the introduced anomalies.

Spectral Anomaly Detection (SAD) Spectral Anomaly Detection (SAD) is a method where a recon-
struction of the spectrum is made by projection onto an orthogonal linear subspace and back into the data
space, and the squared reconstruction error is used as the anomaly metric. The linear subspace used for the
reconstruction is found by using PCA to diagonalize either the covariance matrix of the training spectra or its
correlation matrix, the latter of which normalizes the spectral bins by their variances and therefore improves
the PCA model quality [31, 30]. SAD is a pure anomaly metric and is not able to perform identification.

Non-negative Matrix Factorization (NMF) Non-negative Matrix Factorization (NMF) decomposes
the training spectra into a product of two non-negative matrices, one matrix containing the components
and the other the weights [40, 41]. NMF is similar to PCA-based methods like NASVD and SAD in
that each spectrum is decomposed into a linear combination of components, however the non-negativity
constraint changes the mathematical approach. NMF has an advantage over PCA-based methods that
exploit orthogonality in that it is more compatible with Poisson statistics since the Poisson negative log
likelihood, rather than the sum of squared errors, can be minimized using the multiplicative update rules
given in [40, 41].

NMF has recently been applied to gamma-ray anomaly detection and identification [42, 43]. In this
approach, a log likelihood ratio test is performed by fitting two models: the NMF components from training,
and the NMF components plus the source spectrum as an additional component. This method has been
shown to have increased sensitivity over other similar methods [43]. An example of an NMF background
decomposition and the fitting of an additional source component is shown in Figure 8.

100

101

102

Input spectrum
Total background fit
Background component 1
Background component 2
Background component 3

500 1000 1500 2000 2500 3000
Energy (keV)

100

101

102

Input spectrum
Total background fit
133Ba source template
Background + 133Ba fit

Co
un

ts 
/ b

in
 / 

s

Figure 8: Figure 2 from [43] showing an NMF decomposition of a spectrum into three background components
(top), and the fitting of an additional 133Ba component (bottom) to test for its presence.
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Poisson Clutter Split (PCS) While proprietary, the Poisson Clutter Split (PCS) algorithm is described
in limited detail in two publications [44, 45]. PCS uses a probabilistic representation of radiological back-
grounds learned from training data, accurately accounts for Poisson statistics, and employs a generalized
likelihood ratio test to perform simultaneous detection and identification of anomalous sources. For each
spectrum, likelihoods are computed for the background-only and the source-present cases. The source-
present tests require pre-defined normalized spectral templates. Detection and identification is performed
using a likelihood ratio between these tests, combined with empirical thresholds determined from background
data. The performance of PCS, compared with an ROI approach, was evaluated in [46], finding significant
improvement in sensitivity for both NaI and HPGe detectors onboard a mobile detector array.

Distribution-free approaches All of the algorithms in this section have relied explicitly or implicitly on
knowledge of the shape(s) of background spectra, but there are algorithms that make no assumptions at all
about either the background or the source [47, 48]. These algorithms rely on the Kolmogorov-Smirnov (KS)
test or related tests for the agreement between two distributions. The background spectrum is obtained
either from recent spectra in time or from previous measurements in the same geographic location [49], and
the cumulative distribution function (CDF) of the background (i.e., the fraction of counts less than or equal
to a given energy) is compared to the CDF of the measured spectrum. The KS test or related test provides
a statistical methodology to accept or reject the latest spectrum as anomalous or not. Such tests have no
power to perform identification, only anomaly detection.

2.2.4 Methods using both time and energy information

Although many algorithms make some explicit use of both time and energy, there is usually sparse develop-
ment in one area (e.g., using an energy window instead of gross counts) and dense development in the other
(e.g., using a matched filter in the time domain). Here we highlight some algorithms that make non-trivial
use of both time and energy.

Difference Spectra Often called “waterfall” or “rainbow” plots, two-dimensional histograms of gamma-
ray events by energy and time are often used to visualize the output of a detection system. Although not
an algorithm in the most technical sense, the plotting and filtering of waterfall plots illustrates some basic
ideas of using time and energy simultaneously to detect anomalies. For example, in [50], the authors use
a rolling average of the background spectrum as a current estimate of the background and plot waterfalls
with the background removed. In addition, if the count rate of any spectrum exceeds a threshold based on
k-sigma, that spectrum is considered a possible anomaly and is not folded into the rolling average. In this
way, anomalies like 137Cs were shown to be filtered out from the variable background (Figure 9).

Spectral Comparison Ratios and N-SCRAD The use of spectral comparison ratios (SCRs) was pro-
posed as a way of performing anomaly detection based on the spectral shape using a small number of coarse
energy windows [51, 52]. To construct an SCR, the ratios of measured counts in the windows are compared
with ratios of background estimates for the windows. The SCR method was developed into the current
Nuisance-Rejection Spectral Comparison Ratio Anomaly Detection (N-SCRAD) algorithm [53, 54, 19, 55, 56].
In the time domain, N-SCRAD uses an exponentially weighted moving average (EWMA) of previous mea-
surements to estimate the current background and its covariance. Early versions of N-SCRAD used Kalman
filters to track the background and its covariance [19]. Another feature of N-SCRAD is that it can be
configured to minimize signal effects due to variability in nuisance spectra, typically the three KUT back-
grounds [57], but potentially due to the presence of radiologically anomalous material that is not of interest
to the operator. N-SCRAD is trained to be sensitive to several anomalies at a time and thus offers anomaly
detection but only indirect identification. Examples of coarse spectral windows that may be used for different
groups of sources are shown in Figure 10.

Spectral and Time Filtering Another application of SCRs has been to combine them with wavelet
filtering in the time domain to identify anomalies in RPM data [58]. In that work, spectra from RPMs were
transformed into 8-bin SCRs, and the Euclidean distance (L2 norm) was used as a distance metric between
each measurement and the background (collected before the vehicle passed the RPM). A “Mexican Hat”
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Figure 9: Figure 4 from [50] showing a waterfall plot (a), a waterfall plot where the rolling average has been
subtracted (b), and the same waterfall where likely anomalies have been filtered out before calculating the
rolling average (c). The final result is that 137Cs anomalies, including both the photopeak and downscatter,
can be seen more clearly. The arrow indicates a brief pass by a 137Cs source that is separate from the longer
pass.

Figure 10: Figure 1 from [57] showing examples of N-SCRAD spectral windows used for detecting two groups
of anomaly isotopes.
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wavelet filter was then applied to the distance metric time series data to extract signals that approximate
a source passing by the detectors. In combining spectral and time information, the algorithm outperformed
both the spectral-only implementation and gross counts over a threshold.

WAVRAD WAVRAD [20] is a method that uses a continuous wavelet transform to perform variance
reduction of the measured spectra. The time-domain aspect of WAVRAD is similar to that of N-SCRAD, in
that a running average of recent background spectra is required to compare with the current measurement.
Typically WAVRAD uses measurements from the previous 30–60 seconds to estimate the average spectral
shape, which is then scaled to the current measurement’s gross counts. Using the background estimate,
WAVRAD calculates the deviation between the current, CWT-smoothed spectrum and the background
estimate, and anomaly identification is then performed using the regions of the spectrum with the greatest
deviations. WAVRAD has the additional distinction of being used in this data competition as a baseline
algorithm, so a direct comparison to the competitors’ results is available.

2.2.5 Identification algorithms

The identification of isotopes in gamma-ray spectra is an entire field of study in its own right, i.e., separate
from the detection problem, and the literature goes back decades. Some detection techniques that include
identification or the potential for identification have been discussed in previous sections, and the following
section on neural network approaches will also mention some relevant identification algorithms. For a litera-
ture review focused only on identification, the reader is directed to a recent review of the existing literature
in [59].

2.2.6 Neural Network-based approaches

Neural networks have recently become the state of the art methods for complex data analysis, especially for
object detection, identification, and segmentation in images. They also find wide spread applications in other
complex data streams such as natural language processing, fraud detection, and machine diagnostics. Despite
their tremendous success in these areas, research in their application to radiation detection, identification,
and localization has only recently begun. This section will give a brief overview of this research.

Autoencoders There are many different neural network architecture designs that are used for a variety of
different applications. One such architecture is the autoencoder, which is a type of neural network composed
of two primary parts: the encoder and the decoder. The autoencoder is normally trained in an unsupervised
fashion, that is, the input data is the same as the target output data. The encoder is a series of layers
(densely connected, convolutional, locally connected, etc.) that compresses the input data into a layer called
the latent space which normally has a significantly lower dimensionality than the input space. The decoder
then takes the output of the latent space and through another series of neural layers, expands it back into
its original dimensionality that is then considered the output of the network. Through training, the encoder
must learn to identify salient features in the input data such that the decoder can reconstruct the input data
from the dimensionally-constrained latent space.

One example is a neural network architecture for radiation anomaly detection called the Autoencoder
Radiation Anomaly Detection (ARAD) algorithm [60]. ARAD is targeted at the source search problem in
dynamic background radiation environments and is trained on a set of gamma-ray spectra that represent the
typical radiation background in a given search environment. When source-containing spectra are input into
the trained network, the reconstruction at the network’s output is only able to reconstruct the background
components but not the source components, leading to a spike in reconstruction error that can trigger an
alarm. One of the main causes of false alarms in source search (especially urban) is the highly dynamic
nature of the radiation background. The main contributors to this dynamic background are variations
in the absolute and relative concentrations of NORM in different materials [61, 62, 63, 64, 65], physical
clutter that can attenuate and scatter photons [66, 67], and precipitation-induced wet-deposition of 222Rn
and its daughters 214Bi and 214Pb [68]. By including data from these dynamic background contributors in
the ARAD training set, ARAD is able to recognize and reconstruct these components in collected spectra,
reducing the likelihood of alarming on NORM fluctuations. Like many of the anomaly detection approaches
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described above, one of the advantages of autoencoder-based anomaly detection is that the model does
not require any source data to make a detection decision, allowing it to more rapidly be deployed for a
real world measurement campaign. The initial version of ARAD was published and presented at the 60th
Annual INMM meeting [69]. The algorithm is described in depth in [60] and an additional manuscript is in
preparation [70]. Figure 11 shows an example of the ARAD reconstruction error for a run generated from
the data competition model of Chameleon street (see Section 3) with an 131I source injected at a strength
producing a peak signal to noise ratio of 9 in the gross count rate in the detector. From this figure we can
see that the background count rate varies significantly over the course of the run, with a magnitude and rate
of change rivaling that from the injected source. Despite this, the ARAD reconstruction error overcomes the
alarm threshold at the source but stays well below alarm level for the rest of the run. This alarm threshold
was calculated by setting a false positive rate of 1 per 8 hours. Figure 12 shows one of the alarm spectra
resulting from the 131I source along with the ARAD reconstruction of this spectrum. As can be seen, ARAD
was able to reconstruct the background components of the spectra but was unable to reconstruct the 364 keV
photopeak emitted by the 131I source.

Autoencoders have also been used outside of the source search problem. An autoencoder was designed
and developed to reconstruct the Compton edges from noisy PVT gamma-ray spectra [71]. This autoencoder
is trained on a set of Monte Carlo synthetic data where the input data are gamma-ray spectra with Gaussian
energy broadening (GEB) applied and the target output data are the same spectra without GEB. When
trained on these data, the autoencoder learns to extract a mapping between the GEB and non-GEB spectra.

Convolutional Neural Networks At least one study has explored the application of supervised 2D
convolutional neural networks (CNN) designed for image processing to the radioisotope detection and iden-
tification application space [72]. This particular study used an ensemble of three common neural network
architectures: VGGNet [73], Inception [74], and ResNet [75] to classify non-background radioisotopes (or the
lack thereof) in time series images of gamma-ray spectra rendered as “waterfall” plots. These networks were
trained on the initial data set created for the government data competition and then tested on real world
data collected at the Northern Virginia Array (NoVArray) [76]. The anomalous radiation events contained
in the NoVArray data set are dominated by medical radioisotopes along with a smaller selection of industrial
radioisotopes and special nuclear material [76, 72]. The conclusions from this study demonstrated that CNNs
trained on simulated data can effectively be used on measured data as well without a significant negative
impact on detection/identification performance [72]. Also demonstrated is a method for ensembling the
outputs of each CNN in order to make a single detection/identification decision. It is important to empha-
size that the work presented in this report enabled the development of this algorithm, which highlights the
significance of our work to furthering the state of the art in radiation detection and identification algorithms,
particularly for data-dependent algorithms such as neural networks.

Another group of researchers developed a novel CNN architecture that operates directly on the 1D gamma-
ray spectral histograms generated from CdTe detector data to perform radioisotope identification [77]. This
model consists of a collection of parallel multilayer CNNs (one for each radioisotope of interest) which are
trained on purely synthetic data generated using the Monte Carlo–based Geant4 library. Each CNN contains
two output neurons — one for source present and the other for source not present — and is run independently
on the input spectrum in order to detect a single radioisotope in the input spectrum. This parallel network
approach is unconventional when compared to most neural networks designed for classification tasks which
normally have a single network with multiple output neurons each corresponding to a particular class. One
potential advantage of the parallel independent model is that the entire network does not need to be retrained
every time a new radioisotope is added to the library. On the other hand, the computational requirements for
such a system will likely increase far greater than if one was to add a single extra neuron to the output as is
traditionally done in classification networks. The results of this study indicated good detection/identification
performance when applied to real data taken in laboratory conditions for six different radioisotopes [77].

Another study performed a comparison between a shallow fully-connected neural network and a relatively
shallow CNN on the radioisotope identification problem in NaI(Tl). The models were trained on synthetic
data representing 1D gamma-ray spectral histograms for 29 different sources and a uniformly distributed
background spectrum [78]. The results of the study demonstrated better performance using the CNN rather
than the fully-connected network, however both methods were sensitive to perturbations in the background
radiation and source-to-detector standoff distance [78]. The authors indicated that these problems could
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Figure 11: Countrate and ARAD reconstruction error for a simulated run generated from the data competi-
tion model of Chameleon Street along with an 131I source injected at a strength producing a peak signal to
noise ratio of 9 in the gross count rate in the detector. The background-only countrate is shown in the top
plot of the figure, highlighting the dynamics of the radiation background as the detector moves throughout
the scene. The middle plot shows the countrate from both background and the source, with the dotted line
at the point of closest approach between the detector and source. Finally, the bottom plot shows the ARAD
reconstruction error for this run with a dotted line indicating the alarm threshold (set for a false positive
rate of 1 per 8 hours), generating an alarm at the correct position.
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Figure 12: ARAD reconstruction of a gamma-ray spectrum collected during the alarm phase for the run in
Figure 11. This spectrum generated a detection alarm because ARAD was unable to reconstruct the 364 keV
photopeak from 131I.

likely be solved by expanding and modifying the training data set [78].

Transfer learning The work described in [72] represented a second novel approach to neural network
application to radiation detection problems. The authors leveraged the simulated data from the government
competition to train a CNN. They then applied transfer learning wherein a subset of CNN’s layers were
retrained on real labelled data.

Perceptrons and Other Elementary Networks Research into the use of neural networks for radioiso-
tope identification in gamma-ray spectra began at least as early as 1992 [79]. These earlier efforts mostly
focused on the use of shallow non-convolutional neural networks. One study in particular used a single
layer neural network architecture called an auto associative memory to quantify and identify a variety of
radioisotopes in mixed-sample gamma-ray spectra [79]. This network was trained on source spectra taken
by an NaI(Tl) detector in a laboratory using Greville’s algorithm for network optimization [79], as opposed
to back-propagation which soon became the algorithm of choice for training neural networks.

Single layer perceptron networks have also been used in combination with engineered feature transfor-
mations for radioisotope identification in HPGe spectra [80]. Given that single layer perceptrons can only
learn to extract linearly separable features in the data in which they are trained, it was common practice to
use engineered feature transformations to project the input data onto a more linearly separable space. In
this particular study, the researchers used singular value decomposition on a pre-defined set of energy ROIs
to project the inputs onto an orthogonal space prior to input into the single layer network [80]. The results
of this work were promising and offered a viable alternative to spectral deconvolution, another method for
radioisotope identification in spectra [80].

2.3 Summary

In order to leverage the information contained in list-mode gamma-ray detector events, many types of
algorithms have been developed and deployed over the years to discriminate between background and non-
background environments and to identify the cause of any non-background conditions. From the simplest
algorithm of monitoring gross counts in a spectral window to the decomposition of spectra into linear
components, to the training of CNNs to find anomalies in 2D waterfall histograms, all these algorithms
have a commonality of trying to determine useful filters in both the time and energy domains to improve
anomaly detection and identification performance for a detector system. Some focus exclusively on the time
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domain, trying to leverage local count rate behavior, while other focus exclusively on the energy domain,
often leveraging the entire spectral shape to find anomalies, and yet others apply filters in both time and
energy to attack the problem.

Linear algebra and Gaussian statistics have been the workhorses in this domain for years, but recently
the emerging field of deep learning is beginning to have a major impact, and given the complexity of the
problem it is likely that deep learning will lead to many advances in the coming years. This trend towards
data-dependent algorithms such as deep learning highlights the need for high-quality, large, and realistic
labelled data sets to fuel future innovation in these areas. This data competition demonstrates the ability to
generate such data and use it for the development of novel methods for radiation detection and identification.
This is especially highlighted by the recent development of two deep learning-based algorithms for radiation
detection and identification. One of these is the recent state-of-the-art work of [72], where the data set
presented in this report was used to pre-train a 2D CNN on gamma-ray waterfalls. The network was then
retrained on data from a real detector system with labeled anomalies and proved to perform very well in
such an environment. The data competition data set was also used to both design, develop, and test the
autoencoder radiation anomaly detection (ARAD) algorithm, funded through the Department of Homeland
Security, which has been tested and proven for use in a real-world detection scenario [60, 69, 70]. These
accomplishments demonstrate that this data set is already having an impact in the real world by enabling
new types of algorithms that can work with real detector data, and it highlights the role that large, high
quality synthetic data sets can play in training these new kinds of algorithms.
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3 Radiation Transport Simulations

Gamma-ray background is composed primarily of potassium, uranium and thorium (KUT) present in every-
day materials such as brick, concrete, and asphalt [81, 82]. Photon fluxes due to KUT are highly variable
in an urban search environment due to the fact that nearby buildings can emit wildly different background
signatures [20]. The presence of objects in the scene is also very important in measured background detector
response. Cars parked along streets, and other forms of ‘clutter’, provide shielding for gamma rays emitted
from sidewalks and nearby buildings [67]. Because of these factors, it is very challenging to predict the
gamma-ray background response to a high degree of accuracy at an arbitrary location and the background
signal may fluctuate strongly as a detector moves through an environment.

This work describes the creation of a virtual test bed, based on full 3-D Monte Carlo radiation transport
simulations, with realistic gamma-ray backgrounds and simulated sources. Other efforts have generated
radiological source terms using experimental data, Monte Carlo simulations [7], detector response simulation
codes (like GADRAS) [8] and/or solid angle calculations [9]. These source terms are usually injected into a
measured background or a simple model [10]. This work differs from other efforts in that the backgrounds
are generated using Monte Carlo radiation transport simulations, meaning the background composition and
variability can be easily modified. Having a diverse set of background variations is important considering
the difficulty in detecting weak sources compared to background.

The virtual test bed consists of a collection of data sets representing time series detector response data
for a 2-in×4-in×16-in NaI(Tl) detector moving through a city street without cars or other forms of clutter.
Clutter was not included in this test bed to simplify the model generation and simulation processes. In
the virtual test bed, background composition and magnitude can be varied between data sets, and localized
sources of interest can be placed at any location. Because the data is based on a model and everything in the
scene is known, high-quality labels can be applied to each synthetic data set to train and evaluate algorithms.
High quality data labels are very important when training and evaluating data driven algorithms, especially
those which require large data sets to train. Moreover, multiple algorithms can be evaluated on a common
data set to understand [relative] algorithm performance in a variety of conditions such as detector speed,
background variability, source type, and intensity.

Because modern data driven algorithms require large, diverse data sets to train and test on, a fixed
geometry with fixed background source strengths is not sufficient. To increase data diversity, Monte Carlo
calculations used a set of interchangeable city blocks, so that many different ‘instances’ of the model could
be used to create different streets. Gamma-ray background due to the different KUT components within
each block were computed separately, allowing them to be added back together with different strengths when
generating synthetic data. This model was called ‘Chameleon Street’ due to the ability to change the order
of the blocks and change the strength of the KUT concentrations in the background components, which
increases the variability in gamma-ray background throughout the model

3.1 The Basic Model

Chameleon Street consists of a set of seven city blocks, based on the 3000 to 9000 blocks of Gay Street
in Knoxville, TN, each with a level asphalt center street (40 ft or 12.192 m wide), a smaller asphalt side
street (30 ft or 9.144 m wide), and several buildings. Figure 13 (a) shows a 3-D rendering one instance of
the model and Figure 13 (b) shows seven blocks of the model with labels. Both are arranged in an order
similar to Gay Street. The buildings are hollow shells with a wall thickness of 6 in (15.24 cm). They are
made from concrete, granite or brick. Building heights are mostly less than 45 m with the tallest at 125
m. Asphalt parking lots and soil areas appear in some of the blocks. Only five materials and air are used
in the model. Material compositions were taken from a PNNL report [83]. The different blocks all align on
the center street and can be placed in any order. The blocks have different lengths down the center street,
ranging from 88.4 to 143.3 m. When stacked in different orders, the length of the street is always the same
(786 meters), however the side streets do not appear at the same distances from the ends. The base concrete
layer serves as the floor of each building and the sidewalks (and other areas) outside of the buildings. The
streets are 6 in (15.24 cm) below the sidewalks. Parking lots match the street level except the one in the
northeast corner, which is recessed almost five meters below street level. Table 1 shows the order of the
blocks for the eight different ‘instances’ (a given order of blocks) used in the data competition.
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(a)

(b)

Figure 13: (a) A 3-D rendering of model instance 1 of Chameleon Street. Concrete is gray, brick is red,
granite is tan, asphalt is white, and soil is green. Note that the first and last blocks are repeated on the
opposite ends. (b) An overhead view of seven basic blocks of Chameleon Street with each block labeled. The
arrangement matches Gay Street in Knoxville, starting with the 9000 block on the left (south) and ending
with the 3000 block on the right (north).
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Table 1: The orders of the Chameleon Street blocks used in each model instance in the data competition.
Instance

1 2 3 4 5 6 7 8

N
o
rt

h
→ 3000 8000 6000 3000 3000 6000 8000 5000

4000 3000 5000 9000 7000 7000 5000 8000
5000 7000 4000 8000 9000 8000 6000 9000
6000 4000 3000 7000 5000 3000 3000 6000

←
S

ou
th 7000 9000 7000 4000 4000 5000 7000 7000

8000 5000 9000 6000 6000 4000 4000 3000
9000 6000 8000 5000 8000 9000 9000 4000

For a given instance of the model, after the order of the seven blocks is determined, the first and last
blocks are repeated on the opposite ends. The final models were 201 m wide, 989-1047 m long (depending
on instance) and 158 m high (5.5 m below the street, the rest above). Tallies are only made in the 786
meters of the original seven blocks, but the presence of the repeated blocks effectively gives the model
periodic boundaries, so passes can start at any place in the geometry and ‘wrap around’ to the other end.
Randomizing starting positions and having multiple block orders was done in part to make it difficult if not
impossible for competitors to infer any global information about the Chameleon Street model.

3.2 Background Components

The biggest source of background radiation in an urban environment is the NORM contained in the roadways,
sidewalks and various building materials. The components of NORM used in the data competition were 40K,
232Th and its daughters, 238U/235U and their daughters. Cosmic radiation was not considered because it only
contribute to about 20 counts/sec in a 2-in×4-in×16-in NaI(Tl) detector, or about 1-2% of the total count
rate in a typical urban environment [20]. Background for a given model instance was separately simulated for
each KUT component of each material (asphalt, brick, granite, concrete, and soil) for each block. Granite is
contained in only five of the blocks. With the three main NORM components in each of the 27 material/block
combinations, plus the cesium in the soil, there are a total of 82 background components for each model
instance. Each of the 82 background components was simulated with a concentration of 1 Bq/kg of the
specific NORM component, so they could be combined later with any given activity concentration. The
background components were computed for each instance of Chameleon Street to ensure the that scattering
was correctly modeled from the different neighboring blocks.

3.3 Sources

For each of the separate blocks, two source locations were chosen (three for the 4000 block) for a total of
15 locations in five different types of environments. When the blocks are combined in different orders, those
locations will appear at different positions along the length of the street and the gamma-ray fluxes in the
street will be influenced by the neighboring blocks (scattering). Figure 14 shows the source locations, and
Table 2 lists the distance of each source from the centerline of the street. Sources were 100 centimeters above
the sidewalk, except for location 32, which was 3.4 meters below the sidewalk level, in the recessed parking
lot. Because the blocks appear in different orders and different sources appear at the 15 source locations,
it was deemed unlikely that competitors or their algorithms would be able to infer and leverage the finite
number of source locations.

A small set of five sources was chosen for the data competition - two special nuclear material sources
(SNM), highly enriched uranium (HEU), weapons-grade plutonium (WGPu), and three common isotopic
sources, 99mTc, 131I, and 60Co. The geometry and composition of the SNM sources are IAEA significant
quantities [17]. Two variants of each source were simulated: (1) the source itself and (2) the source with
1 cm of lead shielding. Sources were simulated at nominal strengths that could later be scaled up or down
when they were injected into the competition data. Table 3 contains some specific details about the nominal
strength simulated sources.
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Table 2: Source locations covered five different environments in all of the blocks.
Distance from
road centerline

ID Environment (feet) (m)
32 parking lot (recessed) 50 15.24
71 parking lot 100 30.48
41 front of building 37 11.28
92 front of building 80 24.38
43 interesting corner 35 10.67
72 interesting corner 35 10.67
51 interesting corner 40 12.19
31 side of building 50 15.24
62 side of building 60 18.29
81 side of building 70 21.34
82 side of building 80 24.38
91 side of building 100 30.48
42 between two brick buildings* 40 12.19
61 between two granite buildings 50 15.24
52 between two brick buildings 60 18.29
*Source location 42 is between two brick buildings
and behind a brick column.

Table 3: Sources (bare and with 1 cm of lead shielding) simulated at each source position in each model
instance.

ID source Z Description
1 HEU 92 Highly enriched uranium

25 kg, 90.3% 235U
18.95 g/cc, aged 20 years

2 WGPu 94 Weapons grade plutonium
8 kg, 93.63% 239Pu, 6% 240Pu

19.86 g/cc aged 20 years
3 131I 53 Iodine, a medical isotope

1 µCi, point source
4 60Co 27 Cobalt, an industrial isotope

1 µCi, point source
5 99mTc 43 Technetium, a medical isotope

1 µCi, point source
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Figure 14: Locations of the simulated sources, using an ID number corresponding to the block.
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3.4 Simulations

Separate transport simulations in MAVRIC [3] were run for eight instances of the Chameleon Street model,
each with 82 background components (27 physical components and three isotopes plus cesium in soil) and 150
simulated sources (five source types, two levels of shielding, and 15 locations). Using this methodology, any
background model could be paired with any source in post-processing. To reduce the overall computation
time, the simulations used advanced variance reduction techniques to optimize the calculation of the mesh
tallies in the street. The FW-CADIS method was used with the goal of obtaining low relative uncertainties
in each bin of the tallied fluxes along the lanes in the street [84]. For the background calculations, the biased
source preferentially sampled gamma rays near the surface of the road and the front surfaces of the buildings.
For both background and source simulations, the importance map preferentially killed off low-weight gamma
rays traveling deep into buildings or the road. These simulations would not have been attempted without
the FW-CADIS variance reduction capabilities in MAVRIC.

Each component of background was run for 100 hours, and each source was run for 24 hours (MAVRIC is
a serial code, so these times are for a single AMD Bulldozer 2.3 GHz processor). These times were chosen so
that after processing with the detector response and energy resolution function, statistical uncertainties from
the Monte Carlo were small enough not be noticable in the final synthetic data. These spectra represent the
spectra that would have been seen for a very long dwell time at each mesh voxel location.

3.5 Tallies and Detector Response Function

Four mesh tallies, each corresponding to the centers of the four travel lanes along the center roadway, were
used in every simulation. The centers of the voxels were 1.5 m above the sidewalk level. Background
simulation mesh tallies used 100 cm cubic meshes covering the 786 meters. The simulated sources used a
more tailored mesh to reduce file size and better show the sharp changes in count rate near the source.
Within 150 meters of the source position along the street, 100 cm cubic mesh voxels were used. Within 25
meters of the source, the mesh cells were reduced to 25 cm meshes in the direction of the main road because
the simulated source gamma-ray flux varies strongly near the point of closest approach. The remaining
dimensions of these voxels were still 100 cm. For sources located in blocks that were repeated (near the ends
of the model), the mesh tallies were placed near both simulated sources, to preserve model periodicity.

Tallies recorded the gamma-ray flux in each mesh voxel using 1 keV energy bins from 10 keV to 3000 keV
(2990 bins). The energy-dependent flux in each mesh cell, an example of which is shown in Figure 15 (a),
was combined with a detector response function created for gamma rays striking a 2-in×4-in×16-in NaI(Tl)
detector to create a pulse-height count rate spectrum. An energy resolution function from GADRAS [85]
was also applied to smear the pulse-height spectra into the final count rate spectra. See Figure 15 (b) for an
example NaI(Tl) count rate spectrum.

The accuracy of the modeling and detector response generation methodology has been studied using
a radiation transport test bed of the Fort Indiantown Gap National Guard facility in Pennsylvania [86].
Modeled detector response functions, for both background only and source plus background simulations,
have been compared with experimental data [87].
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Figure 15: (a) Example gamma-ray flux mesh tally and (b) energy broadened pulse-height count rate spec-
trum. Energy bins are 1 keV wide.

4 List-Mode Data Generation and Testing

In order to give users maximum flexibility in organizing the data in any time and energy structure, list-mode
data (a list of timestamps of when a gamma-ray detection occurred along with its associated energy) was
provided. Each data set represents the response of a detector moving at a constant speed down a single
lane of traffic due to background and potentially to simulated source emissions. Background and simulated
source (if present) data sets were generated separately and combined at the end to allow for flexibility in
synthetic data creation.

4.1 Background Data Generation

To generate background list-mode data sets, a set of model parameters were chosen including detector speed,
starting location, ending location, lane of travel, background model, and KUT background activities (bjkl
over isotope index j, block index k and material index l) for each material in each block of the model were
used to generate a set of detector responses (Bi) in 1 meter voxels (voxel index i) through the detector path.
For the TopCoder data competition, parameters for each data set were chosen so that the model parameter
ranges spanned the space efficiently, using a non-uniform space filling approach which aims to focus the
parameter space in a challenging region for data competition participants as discussed in Sec. 6.2 and Refs.
[88, 5, 6]. For the TopCoder competition the following constraints were placed on the model parameters:

• The detector speed was limited to 1–13.4 m/s and remained constant to span from walking to 30 mph
city driving speeds.

• Each data set had to be at least 45 seconds long, limiting minimum path length for a particular speed
to give algorithms enough time to collect background.

• The detector position stayed in one of the four lanes.

• KUT background activities were varied ±80% from nominal values.
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KUT background activities were varied ±80% from nominal values, see Table 4 [86, 89], to simulate
varying concentrations of these isotopes in real world materials and to ensure generated backgrounds did
not have high correlations between K, U, and Th components while representing total count rate variations
that reflect real measured data. These variations are in-line with real world variations in these materials
[90, 91]. Strong correlations between K, U and Th in the data were unfavorable because algorithm developers
may rely on these in developing their algorithm methodology. A correlation matrix, shown in Table 5, was
computed using K, U, and Th count rates from all voxels in each model using about 10,000 sampled KUT
background activities. A small positive correlation is expected in the data because of geometric effects. For
instance, if the detector moves closer to a granite building, K, U, and Th components will all increase and
then decrease when moving away.

Table 4: Nominal NORM concentrations (Bq/kg) used in the materials of the Chameleon Street models.

40K 232Th 238U/235U
and daughters and daughters

asphalt 58.52 3.96 24.34
brick 150.52 8.06 14.77

concrete 138.77 10.2 18.21
soil 247.58 37.75 25.88

granite 720 75 125

This approach allows for the generation of a wide variety of background detector response spectra for a
single geometry. Figure 16 (a) shows the the gamma-ray detector response spectrum for each background
component and the total spectrum using nominal KUT activities in model instance 1. Because the detector
response for each material in each block were calculated independently, contributions to the detector response
from all materials can be tracked throughout the model. Figure 16 (b) shows the total count rate (spectrum
summed as function of position) from each material in each block for a detector moving through Chameleon
Street instance 1 at 1 m/s. In these models, granite buildings produce large peaks in the total detector
response, because granite typically has high concentrations of KUT relative to other common materials [91].
The peaks in the asphalt and valleys in the concrete detector response are due to the presence of the side
streets. Using this information one may be able to understand how algorithms respond to the presence of
certain types of objects in the scene, possibly in terms of false alarms or false positive rates.

Table 5: Correlation matrix between K, U and Th count rates using ±80% from nominal background
variation.

K U Th
K 1.0 0.436 0.533
U 0.436 1.0 0.536
Th 0.533 0.536 1.0

To further increase detector response variability and make it harder for competitors to simply “learn” the
geometry of one model, eight Chameleon Street instances were used; detector starting and ending locations
were varied (to vary the total length of travel); and four lanes of travel were used (the detector can move in
either direction through the model). The total count rate for a detector moving through each background
model is shown in Figure 16 (c), where the variation in the detector responses arises from the differences
in model geometry. Because the detector response in each model are periodic along the direction of the
roadway, a data set can start towards the end of the model and end near the beginning.

For a selected parameter set, the isotope (index j), block (index k) and material (index l) dependent
Monte Carlo detector response spectra, BDRijkl, were scaled by corresponding activities bjkl. The total number
of counts per second of a detector Bi (units of counts/sec) in i is

Bi =
∑

j

∑

k

∑

l

bjklB
DR
ijkl (2)
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Figure 16: (Color Online) (a) Gamma-ray detector response spectrum averaged over Chameleon Street
model instance 1 using nominal KUT activities found in Table 4. Energy bins are 2 keV wide. (b) Material
contributions to the total count rate for a detector moving at 1 m/s through using nominal KUT activities.
(c) Total count rates as a function of position for all eight Chameleon Street models.
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where BDRijkl is in units of (counts/sec)/(Bq/kg), and bjkl is in units of (Bq/kg). The amount of time the
detector spent in each voxel (∆Ti) was calculated by

∆Ti = v∆xi (3)

where v is the detector speed in meters/seconds and ∆xi is the voxel size in meters. ∆xi was used to scale
the count rate detector response Bi in each voxel to generate the mean spectrum (units of counts). The mean
spectrum in each voxel was sampled over each energy bin using Poisson statistics to generate a statistically
representative detector response. To generate list-mode data, each count in a statistically representative
detector response spectrum was spread uniformly in time and energy. Timestamps are assigned by sampling
from a uniform time distribution with bounds beginning when the detector first enters the voxel and ending
when the detector leaves. Energies are assigned by sampling from uniform energy distributions defined by
the upper and lower energy bin edges of the selected channel of the spectrum. This approach assigns each
detected count with a timestamp and an energy.

4.2 Simulated Source Data Generation

To generate simulated source data for the competition, a set of source parameters were chosen including
simulated source type (60Co, 99mTc, 131I, HEU, WGPu and 99mTc + HEU), shielding, location, and activity.
The total count rates for the nominal activity bare HEU source at all 15 source locations in Chameleon Street
instance 1 are shown in Figure 17. Because source locations have different offsets from the road, and some
have different levels of environmental shielding (or shielding coming from the model geometry itself), the
total number of counts reaching the detector for a the same source activity across different source locations
varies widely. To focus on the source strengths that would be detectable, the signal-to-noise ratio (SNR)
at the point of closest approach was calculated for each source and source location. Using the number of
counts from the source, S, and from background, B, on the detector at the point of closest approach, i = i′,
the SNR is calculated using the following expressions,

SNR =
S√
S +B

, (4)

S = aSDRi′ ∆Ti, (5)

and
B = Bi′∆Ti, (6)

where a is the source activity (units of Bq), ∆Ti = 1 second, and SDRi′ is the simulated source-induced
detector response in units of (couts/sec·/µCi) or (couts/sec·/SQ) for SNM sources. One can calculate the
desired source activity, once the background component activities and desired SNR were chosen, by solving
for the physical value of S in Eqn. 4.

Sample spectra from each source and shielding combination are shown in Figure 18. To generate source
detector responses with different activities, the Monte Carlo detector response was simply scaled by a mul-
tiplicative factor. However, for SNM sources, the source geometry is noteworthy because of the effects of
self-attenuation. To get realistic varying levels of activity, one cannot just scale their activities. Instead,
one should generate new source terms with new source geometries. Unfortunately, running thousands of
Monte Carlo SNM source geometries was too costly, so the team decided to scale SNM in a non-physical
way by simply using the multiplicative scaling. For the combination of HEU and 99mTc, the HEU response
was scaled so that SNR at the point of closest approach was constant (SNR=5.0) for all runs while 99mTc
activity varied. This simplified the parameter space and is used to investigate when an algorithm would
detect and identify both HEU and 99mTc at the same time.

Once a source type, location, source activity (based on some desired SNR), and shielding were chosen, the
source spectra (in units of counts) in each model voxel was generated in the same fashion as the background.
These spectra were again sampled over each energy bin using Poisson statistics to generate the detector
response in each voxel of the lane of travel. list-mode data was generated using the same method as
described in Section 4.1. To create the combined background and source list-mode data set, background and
simulated source list-mode data sets were combined and sorted by time.
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Figure 17: Total count rates for all source locations for a detector in lane 1 of Chameleon Street instance 1
for an IAEA significant quantity of HEU. The position increases while navigating from South to North.

Figure 18: (Color Online) Bare and shielded gamma-ray spectra for (a) 25 kg HEU, (b) 1000 µCi 99mTc,
(c) 1000 µCi 60Co, (d) 1000 µCi 131I, (e) 8 kg WGPu, and (f) 1000 µCi 99mTc + 25 kg HEU response term
scaled to SNR=5.0 at the point of closest approach. All spectra are averaged over lane 1 in background
model 1 and energy bins are 2 keV wide.
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4.3 Parameter Generation

In order to effectively explore a large number of scenarios, the team identified the factors with their ranges
of interest that the competition would consider. After discussions, it was determined that 5 sources would
be considered, and a 6th source would be created that was a combination of HEU and technetium (see Table
6 for more details). The goal of including the combined source was to assess how easily the HEU could be
obfuscated with a more benign source. The amount of source used for each run could be varied, and the
tracking of this amount was characterized by a signal-to-noise-ratio that indicated the relative size of the
spectral values relative to the ambient background radiation levels. The source could be either exposed or
shielded, and there were 15 locations throughout the 8 blocks of the simulated street that could be used for
placement of each of the sources.

Table 6: Classification targets for the competition.
ID source
0 null/background
1 HEU
2 WGPu
3 131I
4 60Co
5 99mTc
6 99mTc & HEU

A wide range of backgrounds could be obtained by (a) changing the ordering of the blocks in the MUSE
simulation, (b) altering the beginning and ending points for each run, and (c) changing the K, U, Th values
for each of the material classes in the model. The ranges for K, U and Th were determined based on empirical
values that had been observed in different regions across the country.

The detector could move at a speed that ranged from slow walking speed (1 m/s) to moderate driving
speed (13 m/s). In addition, the detector could be simulated to be driving in either direction up or down
the street, with a choice of 2 lanes in each direction.

In all, there were parameters that could be varied for each of the runs. The source signal to noise
ratio, whether it was shielded and the speed of the detector were considered of primary interest. Which of
the different street configurations, the K, U, Th parameters, the choice of location for the source, and the
direction and lane of travel for the detector were all tracked during the initial analysis, but were found to be
non-significant indicators of performance.

The starting and ending points for the runs were considered nuisance parameters, but helped to provide
variety for the location of the sources.

However, the ability to change all of these components collectively proved important to give the com-
petitors a variety of looks across the runs that simulated a rich set of scenarios.

To generate the final training, public and private competition data sets, each of the sources and the no
source data sets were constructed separately, and then only combined in the final stage. For each source,
an initial superset of runs was generated that was approximately 10 times the size of what would ultimately
be presented to the competitors. Using JMP software, uniform space filling designs were generated for each
background configuration based on the 100+ model parameters. This process was repeated for each of the
six sources. For the no source runs, there were fewer parameters to be specified, since the amount of the
source, whether it was shielded or not, and the location of placement were not required.

Generating designs of this size was a substantial challenge for traditional statistical software. Our ap-
proach was to use composite designs that crossed multiple smaller designs based on subsets of the model
parameters. In addition, three replicates of each scenario were generated, and then separate starting and
ending points for the run were created to alter their appearance to the competitor.

A baseline algorithm for detection and identification was run on each of the generated runs and this
was used to model the probability of correct detection and identification for each source as a function
of background, signal to noise ratio, amount of source, speed of detector and lane of travel. Using the
predicted probability of success from these models, the level of difficulty for each run was assessed. Using
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this information, it was possible to sample an appropriate balance of level of difficulty for each of the sources
for the respective training, public and private test sets.

The goals in constructing the data set were

1. to have sufficient numbers of runs across the ranges of the input space to be able to estimate performance
for each competitor for each source,

2. to have sufficient runs in the no source category to be able to assess the false positive rate,

3. to target the appropriate level of difficulty to distinguish between the competitors (if too large a fraction
of the runs were too easy or too hard, then there would be no differences in performance to explore),

4. to have approximate balance between the sources to have comparable precision in the predictions for
all sources, and

5. to not have such rigid structure in the numbers of runs for each of the sources that this could be
exploited by the competitors.

Hence the competition data set construction was actually based on seven very large supersets (one for
each source and one for the no source case). From each of these supersets, six designs were constructed - a
training, public and private test set for with and without shielding. The size of each of these designs was
chosen to balance

1. the overall size of the competition data set,

2. the goal of having sufficient data to estimate the planned post-competition data modeling,

3. having adequate data for both the public and private leaderboard scoring, and

4. approximate, but not perfect, balance between sources.

Overall, the design construction posed some interesting challenges. The sheer size of the designs, the
number of different scenarios to be explored across the cases of interest and the assessment of anticipated
algorithm performance were all important considerations to presenting a worthy data set to the competitors.
The bookkeeping for these designs and their final combination into the training, public and private test sets
required detailed tracking of the components and careful randomization of the runs in the final stages to
avoid introducing patterns in the data which could be exploited by the competitors.

4.4 Hosting the Government-only Data Competition

Prior to the culminating open data competition (Sec 5), the project team first created a government-only
‘restricted’ data competition for the purposes of:

• Testing the list-mode data;

• Testing the scoring algorithms;

• Validating the concept of the radiological data competition; and

• Developing an understanding of the efficacy of existing government algorithms against the simulated
data set.

Participation in this competition was limited to government employees and others working on feder-
ally supported research. By restricting the participation, the project team was able to enforce that the
government-only competition did not directly compete with the subsequent open competition and partici-
pants were subjected to a usage agreement wherein they were prohibited from disseminating or sharing the
competition data and their methods until after the completion of the open competition. In support of the
governement only competition, the project team created a website, https://datacompetitions.lbl.gov/,
hosted by LBNL that provided the following functionality:
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• Landing page for user registration that lists existing competitions;

• Support for user registration, the formation of ‘team’s’ and user-based administration of their teams;

• Competition-specific information pages to supply users with instructions, competition concepts, and
the ability download the competition data and submission template;

• An upload page and supported back-end scoring algorithm;

• A leaderboard indicating the public scores of each submission; and

• Multiple competition states, active, complete, and ‘zombie’.

Those aspects that deserve further detail are described below.
The user registration model was one where individuals could register and either request their own ‘team’

or to be admitted into an existing team, but would need approval by an LBNL site administrator prior to
account activation. The motivation for enforcing manual approval was two-fold. First, the administrator
could confirm that the registrant was indeed affiliated with a US government institution, and could politely
refer those who were not to the forthcoming open competition. The second motivation was because manual
account affirmation is the simplest way by which to conform to LBNL cybersecurity policies. Upon account
activation, logged-in users were granted access to download the competition data files, to submit their own
answer set, and to view the leaderboard and their team’s submission board.

Approval to create or join a team was granted through a separate manual process. The administer always
registrants to create their own team, but registrants requesting to join an existing team were subject to the
approval of the team. The creation of teams within the data competition environment was one feature that
was substantially different between the government competition and the open competition. It also produced
some unanticipated benefits. Particularly, that of building collaborative teams within institutions. For
example, registrants would often create team names that identified their institution. Subsequent registrants
would see that others from their institution had registered and request their team. Since teams requests are
not automatically approved, at a minimum this required the new registrant to gain approval from the team’s
creator and therefore to initiate contact and potentially realize there are shared research interests albeit
occasionally very disparate skill sets. Members of some teams formulated in this fashion expressed gratitude
that the competition enabled them to meet their peers and formulate professional working relationships.

The competition-specific information was generated to be publicly released. It is ref [92] and the process
of creating the data and associated documentation is best described in ref [93]. The competition-specific in-
formation was visible to those visiting the competition website without authentication. However, the ability
to download the competition data and associated files was restricted to authenticated users. This authenti-
cation requirement facilitated restricted dissemination of the competition data, which helped maintain the
‘fairness’ of the subsequent open competition.

The upload page was designed to be as simple as possible. A screen shot of the page is shown as Figure 19.
The page featured drag-and-drop or file-selection based uploading and a field to name the selected upload
to facilitate organization of a user’s submissions. Upon submission of a solution file the file uploads and is
immediately parsed and scored. The combined actions of uploading and scoring typically took a few seconds
to run, although uploading is connection-speed dependent. Details on the scoring algorithm are provided
in Section 4.4.1. Once a submission is scored, a pop-up window would inform the user the public score of
the submission, or if the file had formatting errors the user would be provided an error message and the
submission would not be scored. The leaderboard displayed each team’s name, best public score, and the
number of submissions each team has provided. An additional team Team Dashboard listed all submissions
associated with that team. The number of submissions each team was allowed was limited to 1,000. The
motivation for this limitation was to reduce the competitors’ ability to ‘game’ the competition by iteratively
submitting answers to discern characteristics of the competition that were not intended to be conveyed, such
as which individual runs were part of the private data set or exactly how many runs with each different
type of source were in the public data set, which presumably could help users infer how many of each type
of source they should answer in the private set (although these numbers were somewhat randomized, see
Section 6.2).

The government competition began January 22 and ran for 112 days, ending on May 14, 2018. In total
there were 66 users, 25 of whom submitted scored results. The users formed 25 teams (5 users never requested

38



Figure 19: View of upload page of the government-only competition website, https://datacompetitions.
lbl.gov/. Specific user names and website host contact information have been removed from this graphic.
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to join a team) and 16 of the teams submitted results. The initially announced end date was April 9 (day 77),
but the end-date was twice delayed to allow the participation incentives that DNN R&D program managers
provided to take effect. On March 16 (day 53), a revised end date of April 30 was announced (day 98)
and then on March 29 (day 66) the final end date of May 14 (day 112) was announced. The cumulative
number of submissions throughout the Competition is shown in Figure 20. The original and temporarily
revised end-dates are shown in green and the dates on which the end-date revisions were announced are
shown in black. Day 66 represented a large up-tick in activity, which waned some until the final week when
submissions increased substantially. The final day of the competition had 267 submissions from 15 of the
competitors.

Figure 20: Number of submissions versus duration of the government competition. Vertical black and green
lines indicate the dates when the announced end-date of the competition was revised (black) and the two
defunct end dates (green).

At the completion of the competition, the website’s state was frozen (marking the state as ‘complete’)
and the leaderboard was updated to show the private scores of each teams’ best submission.

After the competition, the project team solicited feedback from the competitors. Most of the feedback
was quite positive, however, the spectral variability of the competition data set was noted to be lower than
is typically encountered in realistic operations. This particular feedback resulted in changes to the data
provided in the open competition. Changes in the competition dataset between the government and open
competitions included:

• Additional spectral variation in the background environment to further test the competitors and in-
crease the realism of the background found in the real world.

• A shift in the ranges of the SNR for some of the sources to increase the level of difficulty for detection
and identification. Ranges of the SNR for which almost all of the competitors got the correct answer
were not beneficial for distinguishing between algorithms.

• The relative difficulty of the training, public test and private test sets was adjusted to include more
overlap between the datasets. This allowed for easier assessment of and comparison between the
algorithm’s performance for the public and private test sets.
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Figure 21: (left) The distribution of the signal-to-noise ratios for the with-source runs in the government
competition relative for the public and private data sets. (Right) the cumulative distributions of the SNRs,
which better highlights the additional low-SNR data in the private data set.

• The proportion of runs from most challenging source location in the simulated data was increased to
be able to assess a highly challenging scenario.

• Since the final winning algorithms in the government competition had false positive rates that were
operationally too high, the leaderboard scoring formula was adjusted to increase the penalty on false
positives for runs with no source. The implementation of this change directly led to a greater emphasis
by the competitors on keeping the false positive rate lower.

Users also noted that the restriction to six sources was unrealistic, as were the decision to separate
the competition data set into thousands of individual ‘runs’, rather than operationally-relevant continuous
data collections and the absence of detector effects such as gain drift. Some competitors had asked that
we provide feedback on which aspect of the scoring was most adversely impacting their submissions (false
positives, false negatives, misidentification or timing). In addition, some users requested an application
programming interface (API) to enable them to script the submission of their answers. This feature, while
potentially beneficial for the users to accelerate their improvements, was never implemented.

Lastly, several users asked that the government competition website could be made available again so
that they could continue testing their algorithms. This resulted in the website being reactivated in August,
2018 in a ‘zombie’ state (animated, but not live) wherein users could continue to submit and receive scores
based on the public portion of the data set, but the leaderboard would no longer be updated.

4.4.1 Scoring Algorithm

A key to driving results and improvements by the competitors is to have a carefully developed and tested
scoring metric. By its nature the leaderboard scoring need to be defined before the start of the competition,
and also combines the numerous aspects that define a good radiation detection algorithm. In both the
government and TopCoder the competitions, there were 6 sources that were included in the data, and for
each of them, it was important to be able to evaluate the algorithms ability to detect, identify and locate
the source. In addition, a good algorithm needed to have a low false positive rate for runs where no source
was present. The relative importance of each of these criteria needs to be balanced through the number of
runs for each of the sources, and the relative weight assigned to the different characteristics.

In keeping with the standards used by TopCoder, the scores for both the public and private leaderboards
were constructed to have ranges from 0 (worst) to 100 (best) and reflect the aggregate success for three
components: detection, identification, and location. Meanwhile, the government competition scoring ranged
from 0 (worst) to 10,000 (best) on the public leaderboard and the same point scaling, yet differing numbers
of runs in the private data set resulted in a scoring range from -2,002.64 to 11,562.11.
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Let B be the base score and p be the unit of possible penalty (arbitrary scale). The score is initially set
to B points and then it is modified according to these rules:

• For each run that contains a source:

– Detection: If you incorrectly say there is no source present (false negative [FN]), you lose 2p
points.

– Identification and location: If you correctly say there is a source present and the distance D
between the predicted location and the correct location is less than the standoff, b, which is
different for each run:

∗ Identification: If you correctly identify the SourceID, you earn p points.

∗ Location: You earn points according to how far away you are from the correct location, up
to a maximum of p points, following this formula: p · cos((π2 ) · (Db )), where D is the distance
between the reported position of closest approach and the actual position and b is the distance
of closest approach to the source - a run-specific parameter.

– Location: If you correctly say there is a source present but get the location wrong (i.e., not within
a given standoff), you lose 2p points (referred to as false location [FL]) so it is weighted the same
as false negative.

• For each run that does not contain a source:

– Detection: If you incorrectly say there is a source present (false positive [FP]), you lose 2p points.
Otherwise (true negative [TN]), you earn 6p points. For the government competition, TN would
only result in 0p points.

The values of B and p are calculated so that the minimum possible score is 0 and the maximum possible
score is 100.

Since it is preferential for a working detector not to have too many false positives, successfully identifying
runs containing no sources (true negative [TN]) contributes more to the final score than runs with a source.
This was changed from government competition, where it was found that winning algorithms were tuned to
produce too-high FP rates to be operationally relevant.

4.5 A Benchmark Data Set

The data from the TopCoder data competition has been packaged up as a compressed (gzip) tarball (13 GB)
and is now available for download [94]. To download the data, users must use either the Globus Connect
Personal application to create a personal endpoint, see Ref. [95], or a Globus endpoint server to download
the data. Once downloaded, the tarball contains:

• README.pdf–a pdf document with an overview of the data set,

• scorer/–a directory containing a code to score training and test answers,

• sourceInfo/–a directory containing threat source templates,

• submittedAnswers.csv–a template solution .csv file for the test set,

• testing/–a directory containing all test data sets,

• training/–a directory containing all training data sets, and

• trainingAnswers.csv–a template solution .csv file for the test set.

The sourceInfo directory contains source templates for bare and shielded threat sources in SourceData.csv.
Plots of all source templates are also included in .png format.

The training (testing) directory contains ASCII and comma delimited (CSV) format training (test) data
in list-mode format. The first column represents the time between detected photons in units of microseconds.
The second column is the energy of the detected photon in units of kiloelectron volts (keV). For the first
event in each run file, the time since the last event is recorded as 0.
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Example run file:

0,69.0

985,154.7

757,55.5

908,1106.9

1105,356.1

391,116.9

. . .

In this example, the first row records the first event, which had a deposited energy of 69 keV. The second
row describes the second event, which occurred 985 µs after the first with a deposited energy of 154.7 keV.
The third row records an event that occurred 757 µs after the second event (985 + 757 = 1742 µs since the
first event of the run) with a deposited energy of 55.5 keV. The event descriptions continue row-by-row until
the end of the run. The total number of rows for each file varies.

The scorer directory contains a Python 3 code to generate a score based on the solution templates
(solution training.csv and solution testing.csv in the scorer/ directory). This code uses training and test set
answers keys (answerKey testing.csv and answerKey training.csv) for generating training and test scores. A
public score is given for both data sets, on approximately 42% of the runs in the test set and 100% of the
training set. For only the test set, a private score is generated on the remaining 58% of the runs. When
grading the training set, the private score output can be ignored. This segmentation of the test set into a
public and private score was done for the purpose of judging the competition. A template answer sheets
are available in the /scorer directory along with a README text file describing how to run the scoring
algorithm.

Before, during, and after the competition, there was a lot of interest in using this data set for training
and evaluating radiation detection algorithms. The data has been used by analytic teams in the MINOS
program, other NNSA lab research[72], a Ph.D thesis to develop and evaluate a neural network based
radiation detection algorithm [69, 60], and other student projects.
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5 Mechanics of Holding an Open Data Competition

Hosting a data competition can be highly rewarding for the improvements that can be achieved by leveraging
the expertise of the broader community for new algorithms and approaches. However, the process of hosting
the competition can be time- and labor-consuming. Hence, it is important that a clear strategy be used to
present the competitors with the most advantageous sets of data on which they can develop, train and test
their approaches.

In this section we outline the key steps in the development and fielding of the data competition.

1. Identify clear and measurable goals for the competition

2. Assess adequacy and sufficiency of data

3. Determine inputs to manipulate and their ranges of interest

4. Create a superset of all potential data

5. Identify data of maximum interest

6. Construct training, public and private test sets

7. Construct leaderboard scoring

8. Beta test competition

9. Launch and host competition

10. Conclude competition and announce winners

11. Perform detailed analysis of results using a post-competition analysis.

A critical part of the success of the competition is to have clear objectives for what a desirable participant
solution should be able to do, and ensuring that the available data are adequate to match the goals. Precisely
identifying factors to be explored and their appropriate ranges will frame the space over which answers are
sought. We suggest, where possible, to have available a set of candidate data that is considerably larger than
the training and test sets that the competitors will ultimately receive. Instances with desirable properties
can be selected from this “superset” to create an ideal set for each element of the competition. Desirable
instance properties include being in regions where the solution is not too easy or too hard (where differences
between solutions are more likely to show), and that the training, public test, and private test sets provide a
progression of challenges that encourage solutions to demonstrate their ability to interpolate and extrapolate
to avoid overfitting.

Since the leaderboard is typically driven by a single number summary of good performance, selecting how
to balance multiple objectives with the appropriate emphasis on each component is important to ensure that
the winning competitor produces the overall best solution to the problem posed. Since there is considerable
complexity to this competition set-up, we recommend some thorough beta testing by people not involved in
the development. This can help ensure that the fielded competition does not have any unintended problems.

When hosting the competition, using a service provider, such as TopCoder or Kaggle, can help to ensure
that logistical issues are handled by experts. It is important that the sharing of the data sets, the real-time
scoring of the leaderboard scoring for competitors, and the enforcement of rules are all implemented and
executed well.

Finally, when the competition is completed, it is important to maximize the investment in the compe-
tition by conducting detailed post-competition analyses to extract comprehensive understanding about the
relative strengths and weaknesses of the algorithms, differences between the approaches used, and how these
characteristics of performance and approach are connected.
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5.1 Creating the Data

We illustrate the details of the steps outlined above with description of how we implemented the TopCoder
competition for the urban radiation detection problem. In that competition we used simulated data to find
effective algorithms to detect, identify, and locate a variety of radiological sources from the measurements
collected by a radiation detector as it’s driven along typical city streets. While the overall goal is to evaluate
each of these three objectives separately, we also need to formulate a single-number value by which to judge
performance on the leaderboard. A post-competition analysis will consider the objectives individually to
gain understanding about the strengths and weaknesses of the different competitor approaches.

Several aspects of the input space were manipulated to mimic the breadth of urban environments seen
in practice. These were divided into three broad categories: background, sources, and detector movement.
For the background, multiple versions of urban streets were created with different building and feature
configurations and compositions; see Figure 2 for an example. Five different radioactive source types were
included, with an additional source being defined as a combination of two of the sources. The locations on
the street, the strength of the source, and whether it was shielded in a dampening container were also varied.
A key feature of urban detection is being able to separate the background signal (generated from the urban
environment) from the local source. Finally the movement of the detector was varied, by changing its speed,
its traffic lane, and its starting and ending points.

Each instance or “run” of data required setting more than 100 parameters, and individual file sizes ranged
from 160 KB (when the detector is moving quickly and over a shorter section of road) to 7.3 MB (moving
slowly over a longer path with more active background). The target total file size for the zipped data was 10
GB, which constrained the number of scenarios which could be shared with the competitors in the combined
training and test data sets. After the initial development process for the different scenarios, generating the
superset of data (a collection of 100GB of candidate runs to be considered) took under a day of computer
time on a large computer cluster.

As noted in the traditional design of experiment (DoE) literature, matching the design region to the
study problem of interest is essential for being able to answer the right question. This entails identifying the
factors to be varied, ranges of each of the factors, and potential constraints on viable factor combinations
that may make the region to be explored irregular. As with traditional DoE, subject matter experts (SMEs)
typically consider a larger number of candidate factors, and then down-select to identify those that are
thought to be most influential. This changes for a data competition because of constraints on what data
might be available. If the data are being simulated, then the capability of the data generator may restrict
which factors are considered and what ranges are available. If a subset is being selected from an available
collection of real data, then relevant input factors may not have been measured or some factors may only be
available in a portion of the range of interest. The constraints on what is easily available should be balanced
with the study goals, and finding creative ways to expand the available set of data can often improve the
ability of the competition to actually answer the real aims of the study.

Since the generation of the data (once the simulator was complete) was relatively inexpensive, we gen-
erated a “superset” of data that was approximately 10 times the intended final size of the competitor data
set (approximately 100 GB of data). For each of the six sources, a design of experiment strategy was used
to create a space-filling design using JMP software for each of the different street configurations involving
all background and detector movement factors. For the factors with fixed levels, the design was balanced.
For continuous factors, the range was partitioned into 5 sub-ranges for generating the space-filling design,
and then values within each sub-range were randomly generated from a uniform distribution. The design
was then replicated for each street configuration, with different values sampled for the continuous factors.
This background design was crossed with a full-factorial design for each of the source factors. This created
a large super-design involving over 100 factors, and three replicates of each configuration were generated.
Exploration of the diversity of the backgrounds showed that replicates within a set of fixed parameter values
were relatively consistent, while across the breadth of the experiment ranges the backgrounds looked very
different. This provided reassurance that the goal of having the competitors develop general algorithms to
detect in a diverse urban environment was viable.

One of the key elements that we propose as a strategy is that the focus of the competition should not
be on obtaining a global estimate of performance across typical data. Instead, we think that the most
advantageous way of accelerating the improvement of the solutions is to intentionally vary the mix of data
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from what is typical. If we wish to trigger solution improvement for challenging aspects of the problem, then
sufficient examples of that type must be provided for the competitor to see. With the overall size constraint
of the competition data, the most interesting non-trivial scenarios are often too severely underrepresented in
the typical data to offer sufficient information for the competitors to train their algorithms. Oversampling
the more interesting observations allows increased flexibility about what data to select, but does have the
byproduct that the probability of getting the correct answer should only be interpreted locally for a given
set of inputs, and not taken as a representative global proportion across typical data.

The possible data to include in the training, and public and private test sets do not all have similarly
informative value. For example, there may be some instances where answering the question of interest is
trivially simple. In other cases, the instances may be impossibly hard with little practical possibility of having
sufficient information to solve the problem posed. The sweet spot for providing data to the competitors is in
the middle range, where there is a good possibility of getting the right answer if the algorithm is sufficiently
capable. Since a primary goal of the competition is to be able to distinguish between the performance of
different competitors, choosing the majority of the data in this middle range is advantageous. Having a lot of
data where all of the competitors will get the same answer (all get it right, or all get it wrong) is an inefficient
use of resources given the total data file constraint. As a simple illustration, consider a detection problem
where the competitors are asked to determine whether a source is present or absent. A logistic model based
on the levels of the input factors can be used to model this relationship. If we further simplify and just
consider a single input with a known relationship to the probability of correctly detecting, a D-optimal design
places half of the points at the location with a probability of success 0.176 and the other half at the location
with a probability of success 0.824 [1]. As illustrated in Figure 3, input levels that yield probabilities below
the lower value location in the D-optimal design would be too hard for most of the competitors, while input
combinations above the higher value location would be too easy. Neither of these extreme regions would
help identify the most promising solutions. The middle region instead will provide more informative data
for distinguishing competitors.

Hence the goal for creating the data sets should be to provide sufficient data in the anticipated regions
of interest to allow for good estimation for each of the competitors near the top of the leaderboard.

For the urban search competition, we used an available detection and identification algorithm on the
entire superset of data. The data were partitioned by source (plus one set of data for runs containing no
source) and the results from the algorithm to identify each source were used to obtain fitted logistic models
for each source that were a function of source strength and shielding, background level, and detector speed.
Since identification was the most important of the three goals of the study, we focused primarily on this
for defining the most interesting region of the superset. Using this model, regions in the input space were
identified that were sufficiently difficult for this algorithm to justify their inclusion in the competitor data
sets. In addition, we consulted with subject matter experts to frame the region where they thought that
an exceptional algorithm might be able to discern a signal, both for detection and identification. The most
difficult region for identification was used as an upper bound. However, to reduce dependence on using this
as a prior, and since the range of interest for each of the inputs had been determined separately, we opted
to continue to use the entire range for each of the inputs, but to weight the more promising regions more
heavily. Hence for each source, regions that were deemed to be “easy” with P(identification) > 0.824 were
weighted very lightly, since the current algorithm could already solve this problem. Regions of the input
space with 0.5 < P(identification) < 0.824 were sampled moderately heavily, since success here was already
likely but was not guaranteed with the current baseline algorithm. Regions of the input space with 0.176 <
P(identification) < 0.5 but still within the region that the experts thought was potentially attainable were
sampled heavily since it was hoped that improving algorithms might be able to grow into good performance in
this region, and we wished to have good ability to distinguish between competitors here. Finally, the region
with P(identification) < 0.176 were sampled moderately heavily, since this region was currently deemed
very difficult, but we did not want to preclude being able to identify an extremely good algorithm at the
conclusion of the competition.

Once this exercise had been completed, we evaluated the chosen prioritization in the context of the
detection goal. Since there were still lots of highly challenging regions for the identification aspect, the
subject matter experts thought that the amount of data to evaluate the detection aspect would be adequate
for comparisons between algorithms. At the conclusion of this phase, the entire region of the input space
was still represented, but some regions were emphasized more heavily than others as a reflection of their
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anticipated relative importance to understanding and comparing competitor solutions.
One of the obstacles to using data competitions to develop long-term solutions for complex problems

is the required static nature of the data sets. In order to have fair comparisons between competitors and
for them to understand the requirements of the solution, the data sets remain unchanged throughout the
competition. From the competitor perspective, this provides opportunities for learning from their previous
submissions and experimenting with adjustments to the solution algorithms. Particularly, if the training
and test sets share similar performance characteristics, then it is even easier for competitors to improve
the leaderboard score by continuously increasing the model complexity to capture the idiosyncrasies found
in the training data. With repeated experimentation, the algorithm can be tuned to maximize the team’s
leaderboard score. From the host perspective, this fixed set of data could potentially lead to competitors
solving the wrong problem – rendering the developed algorithm ineffective when used on a more general
solution space. The potential risks of model overfitting based on a single data set are well documented, but
this problem is exacerbated because of the repeated submission aspect of data competitions. Hence, it is
important to use the construction of the training, public test, and private test sets as a way of mitigating
overfitting and encouraging generalization to unexplored scenarios. Two strategies are recommended: 1.
Force the competitors to demonstrate their solutions in expanding regions of the input space, and 2. During
the analysis phase, monitor changes in performance between the public and private data sets to quantify the
effect of overfitting in the presence of feedback from multiple submissions.

To force competitors to handle new scenarios well, it is helpful to construct the training, public test, and
private test sets with increasing levels of difficulty. By not providing answers in the training set to the most
difficult scenarios that the participants will be asked to compete on, their algorithms will need to be robust
to solving new challenges. In addition, since the private test set will ultimately determine the winner, it is
helpful to include new scenarios that the competitors could not tune their algorithms to through multiple
submissions against the public test set. In this way, the private test set data provides a good proxy for
assessing how algorithms might be expected to perform when a new possible scenario is considered.

The reasoning behind these definitions of the different data sets is to force the algorithms to demonstrate
their ability to handle interpolation and extrapolation. Based on the training data, competitors will not
have seen answers in the more difficult region in the public test set (light blue perimeter outside of white
training set), and hence their solutions will need to demonstrate the ability to expand into new scenarios.
This process is repeated for the stretch from the public to private test sets, where the hosts can see how
well the algorithms again extend to further new scenarios. Ultimately, the host wants the winning solution
to perform well, not only in the competition setting, but also in new (perhaps currently unanticipated)
scenarios. The interpolation elements (holes) provide an opportunity to check if there are differences in local
behavior that can be a symptom of overfitting.

For the urban radiological search competition, the starting point for creating the three data sets was
to clarify which levels of each factor correspond to more challenging conditions. First we consider the
extrapolation part of specifying the data. Using a currently available detection algorithm, the superset
of data throughout the input space was used to estimate a logistic model for detection capability as a
function of the inputs. Based on this estimated model, detecting a source becomes more difficult at higher
speeds. Similarly, shielding a source makes it more difficult to detect or identify. Some of the background
conditions also were estimated to make the search more difficult. For each of these factors, where there was
an anticipated gradient from easy to hard, sub-ranges for the training and public test were specified.

5.2 Creating the Leaderboard

With the data sets for the competition constructed, one key aspect of the competition still needs to be
developed. The leaderboard scoring provides a single formula metric for ranking the competitor solutions
from best to worst. If this ranking is not strategically chosen to match the goals of hosting the competition,
then several undesirable outcomes are possible: (1) the competitors focus on aspects of the problem that
are of lesser importance, and/or (2) the overall winner does not provide the most desired solution to the
competition. It is important to remember that competitors will not be driven by solving the right problem,
but rather by maximizing their score. Hence the burden of providing the right encouragement to the
participants to focus on important aspects of the problem lies with the competition host. Similarly, once
the formula for the leaderboard scoring is set, there is typically no opportunity to change it if solutions are
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migrating in a direction that does not match the host’s goals.
One aspect that is helpful to consider is that each instance in the test set does not need to contribute

the same amount to the overall score. The contribution of a particular objective to the overall leaderboard
score is a function of two elements: how much each instance in that category is worth, and what fraction of
the test set is comprised of data from that category. For example, for the urban search competition, there
was interest in moderating the false positive rate. This interest is driven by operational settings in which
one wants to ensure that responders are not overwhelmed by following up on too many false alarms. Since
“no source” is the typical condition of an actual run, a larger fraction of the data was dedicated to “no
source” instances, and hence in the scoring algorithm each of these runs contributed half as much to the
“with source” scenarios. The “with source” scenarios involve considerably more work by the competitors
– detecting that a source is present, identifying which source it is, and locating where along the path it is
found. Hence, each of these runs was weighted more, but there were fewer of them in the total test set.

To determine suitable weights for each of the components, a number of answer files, which were intention-
ally altered from the perfect answer key, were constructed, and different weightings for the three components
were applied. Initial subject matter expertise was used to suggest potential weightings that were thought to
reflect competition priorities. Mock leaderboards for these different candidate weightings were constructed
to rank the constructed answer files. For example, changing the weights changed the position on the leader-
board of a submission with excellent identification but more false positives, relative to a submission with
excellent identification but poorer ability to locate the source. Subject matter experts then identified which
ranking of the different scenarios best matched their priorities for a winning submission.

As with many data collection strategies, ensuring that the data closely match the goals of the experiment
is essential for efficient use of resources. For some competitions, the primary objective is simply to find
the best solution for the set of data provided. In other cases, there are multiple goals which need to be
simultaneously accomplished. For the urban search competition, the goals included identifying the best
solutions in different regions of the input space (not necessarily just the global winner), understanding the
characteristics of performance of all of the solutions across the input space, and characterizing the regions of
the design space where the problem remains largely unsolved. And these aspects were explored for each of
the detect, identify and locate objectives. The data presented to the competitors was intentionally chosen
to allow answers to each of these questions.

We emphasize that the results of data competitions should not be interpreted as giving an overall assess-
ment of how well an algorithm or solution might do when implemented. Recall that the choice of which data
to include in the competition was based on having good ability to estimate performance in different regions
of interest, and this renders a strategy to over-represent the more challenging scenarios and under-represent
the easier ones given the size constraint of the overall competition data. For example, in the urban search
competition, the number of with source runs was dramatically over-represented (we hope!) relative to every
day experience.

5.3 Choosing a Website Host and Post-Competition Analysis

The choice of which service provider to select for hosting the competition website was based on their capability
to support the rules and process that the host wishes to implement. For this competition, the priorities that
we wanted to incorporate included: (1) flexibility on the number of submissions per day, but with an overall
cap to the number of submissions, (2) having the competitors actively declare which submission(s) they
wanted considered in the final scoring, (3) the ability to have access to the .csv files for all of the submissions
from all of the competitors, and (4) the code that the competitors used for their winning submissions would
be collected and available for further analysis. The TopCoder provider was able to satisfy all of these
requirements.

Providing the prize money to an open competition field using government resources proved to be one of
the major challenges of hosting the competition. Several times it looked like a path to allow this had been
found, before a new obstacle was introduced. Ultimately the solution to the many logistical challenges that
the distribution of prize money introduced was to worked with a NASA group with extensive experiences
hosting open competitions. They were able to act as a coordinator for the bid process to solicit RFPs from
outside vendors as well as the mechanism for the transfer of funds to TopCoder, who ultimately was in charge
of the distribution of prize money to the competition winners.
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6 Results and Statistical Methodology

In order to implement the competition with the features that were desired, new statistical methodology was
developed, and some existing exploratory analysis methods were adapted to summarize what was learned
from the competition results. Throughout this section, the results shown are for the private portion of
the test set, which is the set used to determine the final ranking of the competitors and is likely most
representative of future performance of the algorithm. The final submission for each competitors was used
to determine their ranking and all of the analyses in this section are based on these results.

6.1 Outcome of the Competition and Algorithm Performance

One beneficial way to explore patterns in the results is to look at the correct identification and detection
proportions for each of the 6 sources for the TopCoder top 10 prize winning competitors, as well as several
established baselines and 2 non-prize winning competitors [6].
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Figure 22: Bargraph of top competitors compared to baselines and two non-prize-winning competitors.

The barplot in Figure 22 shows the results for each source (and the no source subsets of data. The order
of the bars is kept consistent throughout all of the subplots, with the first 10 bars corresponding to the
prizewinners, in the order that they were ranked by the private leaderboard. The last 5 bars correspond to
different baselines that were scored for the leaderboard after the competition was completed.

For the subplots for each source, green indicates that proportion of runs for which the source was cor-
rectly identified. The dark blue corresponds to the proportion of runs where the source was detected, but
misidentified as one of the other sources. The combined height of the green and dark blue corresponds to
the proportion of detected runs for that source. Finally, the light blue corresponds to the proportion of runs
where the source was not detected, and the run was declared to have no source.

For the runs with no source, the light blue corresponds to runs that were correctly specified as having no
source, while the dark blue corresponds to the proportion of the runs for which the competitor said that a
source was present. This fraction corresponds to the false positive rate of the algorithm as measured by the
proportion of runs.

One interesting feature of the results is that the order of performance across the different sources is not
consistent. For different sources, the best competitor for identification and detection varies among several
different prizewinners. The top 10 competitors all have a low false positive rate, as this was something that
was penalized harshly with the leaderboard scoring.
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6.1.1 Confusion Matrices

Next it is possible to consider the identification performance for each of the top 3 competitors compared to
the top performing baseline. Figure 23 shows a graphical summary of the confusion matrix for the baseline,
WAVRAD for the private test data runs. Each row of the plot represents the data from one of the 7 subsets
of data (6 sources, plus the no source subset). Each column represents what the competitors indicated
what the result of the run was. For example, if we look at the first row and last column, this indicates
what proportion of the runs that actually contained some source 1 (HEU), were scored as No source by the
WAVRAD algorithm.
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Figure 23: Confusion matrix for baseline, WAVRAD. Rows indicate the true source, while the columns
indicate the source indicated by the algorithm.

An ideal plot would have red along the principal diagonal, and dark blue everywhere else. This would
indicate that all of the runs for a given source were correctly identified as their correct type, and there was
no misclassification.

The results from WAVRAD indicate that many of the runs were not correctly detected or identified, as
the largest proportion of the runs for each of the 6 sources were labeled as No Source.

Figures 24 to 26 show the results for the top three competitors. Recall that the winner of the competition
had a private test score that was notably higher than the rest of the competitors. The second and third
place competitors were behind the winner, but had some separation from the remaining competitors. Hence,
for many of the summaries provided, we will focus primarily on the top 3 finishers and examine their results
more closely.
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Figure 24: Confusion matrix for TopCoder winning competitor.
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Figure 25: Confusion matrix for TopCoder second place competitor.
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Figure 26: Confusion matrix for TopCoder third place competitor.
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When we compare the results of the top three competitors, we see that they have much higher detection
rates than the WAVRAD algorithm. This matches what was seen in Figure 22, and in the confusion matrices
shows up as the rightmost column having much smaller proportions.

Across all of the top three competitors, the most frequent confusion between the sources was that if a
run was misclassified it was most commonly labeled as source 6 (HEU + 99mTc).

For sources 1 through 4, the winning competitor has lower false negative rates than the second and third
place finishers. There are considerably differences between the patterns of performance for the different
sources, and among the competitors.

6.1.2 Analysis by Source Location

An additional consideration was how much variability there was in the performance of the algorithms at
different locations for the source. In the simulated data there were 15 locations along the mapped road
where the sources could be placed. These locations were designed to be of varying difficulty with some of
the placements of the sources making them partially or fully invisible to the vehicle carrying the detector.
Other locations were designed to be more straightforward with the source placed in the open. The location
labels range from 31 to 92, where the first digit indicates on which block of the simulated road the source
location lies. The second digit indicates which placement within that block the location is. Each of the 7
blocks has two possible locations, with block 4 having three locations. The number of runs in the training
and testing sets for each source and each location are plotted in Figures 27 and 28.

To assess differences in the level of difficulty of the locations, Figures 29 through 34 show the overall
proportion of correctly detected and correctly identified runs for each of the sources for the top 3 competitors.
The x-axis shows the location on the street. When combined in the proportions that were used in the test
data set, these values correspond to the global summaries in Figure 22 for the top three competitors. The
black dot corresponds to the first place competitor, while the blue and red dots correspond to the second
and third place finishers, respectively.

54



(a) Background :: Training (b) Background :: Testing

(c) Source 1 :: Training (d) Source 1 :: Testing

(e) Source 2 :: Training (f) Source 2 :: Testing

(g) Source 3 :: Training (h) Source 3 :: Testing

Figure 27: Number of runs in the training (left column) and testing (right column) data sets at each location
for background and sources 1, 2, and 3.
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(a) Source 4 :: Training (b) Source 4 :: Testing

(c) Source 5 :: Training (d) Source 5 :: Testing

(e) Source 6 :: Training (f) Source 6 :: Testing

Figure 28: Number of runs in the training (left column) and testing (right column) data sets at each location
for sources 4, 5, and 6.
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Figure 29: Proportion of correctly detected and identified runs for source 1 (HEU). Black: 1st place, Blue:
2nd place, Red: 3rd place.

57



Figure 30: Proportion of correctly detected and identified runs for source 2 (WGPu). Black: 1st place, Blue:
2nd place, Red: 3rd place.
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Figure 31: Proportion of correctly detected and identified runs for source 3 (131I). Black: 1st place, Blue:
2nd place, Red: 3rd place.
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Figure 32: Proportion of correctly detected and identified runs for source 4 (60Co). Black: 1st place, Blue:
2nd place, Red: 3rd place.
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Figure 33: Proportion of correctly detected and identified runs for source 5 (99mTc). Black: 1st place, Blue:
2nd place, Red: 3rd place.
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Figure 34: Proportion of correctly detected and identified runs for source 6 (HEU + 99mTc). Black: 1st
place, Blue: 2nd place, Red: 3rd place.
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When we examine the results of the proportion of correctly detected and identified runs for each of the
top competitors, there are several interesting results. There are clearly differences in how the algorithms
perform for the different sources across the different locations. The overall summary in each plot which
shows the proportion of correct detection and classification provides helpful feedback for the strengths and
weaknesses of the algorithms for each source. The winning competitor is not uniformly best for all sources.

For source 1 (HEU), all 3 of the top competitors performed similarly well across all locations when it
came to just the detection portion. The fraction or detected sources ranged between approximately 40% and
80%, with the first place competitor outperforming the other two at nearly every location. For identification
however, the performance was relatively stable across all locations except for location 32, where the first
place competitor only had a correct identification fraction of roughly 10% and the other algorithms scoring
between 30% and 40%.

For source 2 (WGPu), all three competitors scored similarly across all 15 locations for both the detection
and identification problems. The correctly detected fraction was relatively stable at approximately 50%, with
the first place algorithm again outperforming the other two at all locations. Correct identification fraction
also landed around 50%, with the first place algorithm coming out as best.

For detection of source 3 (131I), the same trend as was seen for source 1 was found here. For identification
however, all 3 algorithms performed very poorly for location 32, with correct identification fractions between
0% and 5%. This same trend is found for sources 4 (60Co) and 5 (99mTc), with very poor detection and
identification performance for source 4 and poor identification performance on source 5.

On the other hand, all three of the top competitors performed very well on detection of source 6 (HEU
+ 99mTc), with the majority of correct detection fractions for the various locations between 90% and 100%.
Likewise, most of the correct identification fractions were over 60%, with the exception of locations 32 and
92, which did not perform as well.

There are clearly easier and harder locations, as was intended in the simulation design, and this shows
considerable variability around the overall proportion for the entire private data set. In particular, for sources
3, 4, and 5, all three of the top competitors performed poorly on identification at location 32, with correct
identification fractions of near 0%. Figures 27 and 28 highlight a likely reason as to why this occurs, where
it can be seen that approximately 25% of the runs in the testing set were at location 32, with only 0.25%
of the runs in the training set at this location. From a machine learning perspective, doing this gives us
the opportunity to test the algorithms at a location that is undersampled in the training set, which can
possibly be used as a sort of measure of location generalizability. The poor identification performance of the
algorithms at this location could possibly indicate that the spectral signature of the sources at location 32,
as a result of its unique model geometry, were not well represented in the training set, making it difficult for
the algorithms to achieve success with identification in the test set. Despite this, the algorithms were still
able to perform the detection problem very well at this location, demonstrating a level of robustness for that
particular problem.

In addition there is considerable variation between the competitors on the locations as well. When it
does not appear that there are 3 dots for a particular location, this indicates that the top three competitors
performed so similarly that there was overlay in the plotting symbols. However, this is not that common
across all of the sources and all of the locations. The relative ordering of the three competitors for most
locations remains similar for most cases, but the spacing of the points can have some variability.
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6.1.3 Logistic Regression

The previous plots represent exploratory data analysis summaries of the results. To gain further insights
into the performance of the top 3 competitors, a more formal approach that considers variations in the
inputs across the runs in the data sets was used. The model-based post-competition analysis used a logistic
model to gain understanding about which of the inputs were most influential in changing the probability of
detection or identification.

The data were again partitioned into different subsets for each of the sources, to examine results specific
to the different portions of the detection and identification problems.

A logistic regression model was fit to the data to predict both the probability of detection and the
probability of identification. Note that while these predicted values across the input space are called “prob-
abilities”, it is perhaps better to think of them as a smoothed summary of the “fraction of correct detections
and identifications” for a particular algorithm. They are unbiased estimates of the probability of detection
or identification, but may have quite large associated variances. Hence we can think of the presented results
as an empirical assessment based on the observed data.

Another important consideration for the modeling is the unequal number of runs in different regions of
the input space. While this strategic choice to emphasize more difficult regions of the input space for the
private and public test sets serves an important role in the ranking of the competitors based on their ability
to demonstrate good characterization in more challenging scenarios, it does mean that the prediction for
the contours is not as precise in some regions as in others. As we interpret some of the results later in this
subsection, we highlight how sparsity of data may lead to some instability in the prediction for the logistic
regression.

From Figure 22, the data were categorized as a success if they contributed to the green or dark blue, when
considering the probability of detection, or just the green when considering the probability of identification.

For the probability of detection, the model form was

P (detect) = ex
′β/(1 + ex

′β)

where

x′β = β0 + βSNRXSNR + βShieldXShield

+βBackgroundXBackground

+βLaneXLane + βSpeedXSpeed

In the above equation, XSNR denotes the signal to ratio value for the source, while XShield is an indicator
variable which is 1 if the source was shielded, and 0 otherwise. XBackground is an indicator variable which
specifies which of the 8 backgrounds was used in the run. To capture characteristics of the detector’s
movement, XLane is a continuous variable with values 1 through 4 to denote how close the lane is to the
location of the source, with 1 being the closest. XSpeed is a continuous variable that denotes the speed of
the detector in meters per second.

The probability of identification model had the same form as the probability of detection. When the
models were fit for each competitor’s final submission, the first stage of analysis was to evaluate which of
the terms in the model were statistically significant. We found that there was remarkable consistency in the
results across different sources and competitors.

For both the probability of identification and detection models, βBackground and βLane model parameters
were rarely significant. This indicates that which version of the street was being modeled and which lane
the detector was traveling in was not a good predictor of the performance of the various algorithms. This is
reassuring in that it is highly desirable for the competitors’ solutions to be robust to these nuisance factors.
The remaining terms in the model, involving βSNR, βShield and βSpeed were consistently highly significant.
The large sample size of design allowed for considerably power for the testing of significant terms, and hence
should indicate confidence in having found real patterns in the data.

After this initial model fitting, more flexible higher order models were considered for only those terms
which were significant. A full second order model with two-way interactions between the terms as quadratic
terms for speed and signal to noise ratio were considered to allow for better fitting of the responses. The full
model was fit, and then model selection performed with only those terms that were statistically significant
at the 5% level retained in the model.
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Figures 35 through 37 show the fitted contour plots for each of the top three competitors for source 1
(HEU). The top row of the plots shows the fitted model for the probability of detection, while the bottom
row shows the probability of identification. The left side of the plot provides results for the cases when
the source was not shielded, while the right side of the plot indicates results when the source was shielded.
Within each plot, the x-axis shows the speed of the detector, while the y-axis indicates changes in the signal
to noise ratio.

Since we would expect that the algorithms would find a fast moving detector combined with a small
amount of source material to be the most challenging version of the problem, the probabilities of detection
and identification are generally the smallest in the bottom right corner of each plot.

Figure 35: Contour plots for source 1 (HEU) for the winning competitor, pfr .
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Figure 36: Contour plots for source 1 (HEU) for the 2nd place competitor, p kuzmin .
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Figure 37: Contour plots for source 1 (HEU) for the 3rd place competitor, gardn999 .
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Figure 38: Heatmap for winning algorithm for unshielded source 1 (HEU) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR

When we examine the results for the top three competitors for source 1 (HEU) we see that in general the
unshielded version of the problem is less challenging than the shielded version. For all three competitors,
SNR values greater than 4 for the unshielded source had a very high probability (> 0.9) of detection. For
the shielded source, the results for the probability of detection indicate that the speed of the detector plays
a role in the ability to get the correct answer (as denoted by the non-horizontal contour lines).

The shape of the contour curves for the probability of identification look much more varied between the
competitors. The winner in Figure 35 has inverted contours that indicate that it has a more difficult time
with higher signal to noise ratio values than small. This unintuitive result may be an artifact of the smaller
sample sizes in the high SNR values for the test set data. Figure 38 shows the detailed breakdown of the
proportion correct for different combinations of SNR and detector speed. While there were less runs in the
top portion of the plot, as denoted by the smaller numbers in each cell, there does appear to be a pattern of
poorer performance for some of the larger SNR values. The small sample sizes for these regions makes the
variability of these estimates large, but it is clear how the logistic regression identified this pattern. If we
restrict ourselves to a smaller portion of the region, where there is more data (say in the bottom right portion
with > 10 runs per combination, then we see that there is a more expected pattern of poorer performance
for very low SNR and some improvement for larger values (say up to SNR of 2.9).

When we reexamine Figure 22, we see that the winner performed well on detection for source 1 (HEU),
but was not one of the top performers for the identification aspect. Both the second and third place finishers
has good identification ability for the no shielding case with a high probability of correct identification as the
SNR value gets larger. The ability of these two competitors to get the identification correct is much more
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Figure 39: Heatmap for 2nd place algorithm for unshielded source 1 (HEU) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR

dependent on the SNR than the speed of the detector, as can be seen by the near horizontal nature of the
contour lines. Figure 39 shows a corresponding heat map for the second place finisher. When we compare it
to Figure 38, we see that this has a much more typical pattern with improving performance as we move to
the top left corner of the plot.

Overall, the second and third place competitors perform better than the overall winner for identification
of source 1 (HEU). All three competitors perform similarly well for the detection aspect of the problem, with
the shielded source being more challenging.
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From Figure 22, we see that source 2 (WGPu) was one of the easier sources to detect and identify. When
we examine the contour plots for the top three competitors in Figures 40 through 42, we see some common
patterns emerging.

Figure 40: Contour plots for source 2 (WGPu) for the winning competitor, pfr .
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Figure 41: Contour plots for source 2 (WGPu) for the 2nd place competitor, p kuzmin .
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Figure 42: Contour plots for source 2 (WGPu) for the 3rd place competitor, gardn999 .
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The resulting contour plots from the logistic regression models for source 2 (WGPu) in Figures 40 through
42 show that for both the probability of detection and identification when the source is unshielded, all three
of the top competitors are able to have a high probability of success when the SNR ratio is larger than 3.
The speed of the detector does not seem to be a major contributor to differences in performance for this
source when there is no shielding as the contour lines are close to horizontal for all top competitors.

For detection, the shielded source poses slightly more challenges, but overall for SNR values greater than
4, all of the top three competitors were able to do well.

There are differences in the probability of identification for the shielded source, with none of the com-
petitors being able to achieve a high probability of success. The surface is relatively flat with a narrow range
of overall correct identification throughout the region.
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The contour plots for source 3 (131I) show some interesting patterns across the top three competitors as
illustrated in Figures 43 through 45.

Figure 43: Contour plots for source 3 (131I) for the winning competitor, pfr .
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Figure 44: Contour plots for source 3 (131I) for the 2nd place competitor, p kuzmin .
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Figure 45: Contour plots for source 3 (131I) for the 3rd place competitor, gardn999 .
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The resulting contour plots from the logistic regression models for source 3 (131I) in Figures 43 through
45 show some similarities between the first and second place competitors, while the pattern for detection
and identification for third place finisher looks somewhat more different.

For the first and second place finishers, there is relatively little difference in performance for the probability
of detection whether the sources was shielded or not. Again, the SNR has a much greater impact on detection
than the speed of the detector (nearly horizontal lines).

For the third place finisher, there are more differences between the shielded and unshielded versions of
the problem, with the pattern in the data indicating that this algorithm is slightly better at detection for the
unshielded case and a fixed SNR value when the detector is moving more quickly. The more typical pattern
of detection being harder with faster detector speeds is observed for the shielded subset of data.

77



Figure 46: Heatmap for winning algorithm for unshielded source 3 (131I) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR

For identification, all three top competitors have a more difficult time with this aspect of the problem than
detection. The contours indicate a relatively low success rate throughout the region with larger SNR values
proving more challenging. Again the small sample sizes for the number of runs in the test set with large
SNR values, leads to some larger variances for the local estimates of the fraction correct, which translates
into some instability in the surface fitting.

Figures 46 and 47 provide a more detailed look at the pattern of correct identification for both the
unshielded (Figure 46) and shielded (Figure 47) versions of source 3 (131I).

When we examine the figures, we again see patches with very low probability of correct identification for
larger SNR values, but they occur in cells with very small sample sizes. For the lower portion of the plots
(where we have double-digit numbers of runs per cell), we have low success rates for the very smallest SNR
values, and then some improvements as the SNR value improves. When we move to the top half of the plot,
we start to see much less consistency in the results for adjacent cells. Similar patterns are observed for the
2nd and 3rd place algorithms as well.
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Figure 47: Heatmap for winning algorithm for the shielded source 3 (131I) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR
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The contour plots for Source 4, cobalt-60, show some interesting patterns across the top three competitors
as illustrated in Figures 48 through 50.

Figure 48: Contour plots for source 4 (60Co) for the winning competitor, pfr .
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Figure 49: Contour plots for source 4 (60Co) for the 2nd place competitor, p kuzmin .
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Figure 50: Contour plots for source 4 (60Co) for the 3rd place competitor, gardn999 .
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When we examine the results of the logistic regression fitted models for source 4 (60Co) in Figures 48
through 50, we see some different patterns than for some of the other sources.

All three of the competitors exhibit different patterns in their ability to detect this source across the
combinations of SNR and speed of the detector. In other sources, we have seen near horizontal lines for the
contours for both the shielded and unshielded sources. Here, we see some more complicated patterns with
different features as the speed of the detector increases to near maximum speed. For all three competitors, the
best performance for detection occurs in the top left corner of the plot with minimum speed and maximum
SNR. The region where the probability of detection exceeds 0.9 is very small and in some cases is not achieved
by the algorithm.

Figure 51: Heatmap for winning algorithm for unshielded source 4 (60Co) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR

The predicted probability of correct identification again seems less than intuitive, with all three competi-
tors having the most success for both the shielded and unshielded cases when the SNR values are small. As
with Sources 1 and 3, the explanation for this behavior may be partially a result of the nature of the spread
of the runs for the test set across the ranges of the SNR and speed inputs.

Figures 51 and 52 provide a more detailed look at the pattern of correct identification for both the
unshielded (Figure 51) and shielded (Figure 52) versions of tsource 4 (60Co) for the winning competitor.

The figures show quite a few cells with quite observed low success rates, and we see that there is gen-
erally a lack of systematic patterns connecting the results from adjacent cells in the plots. As a result the
logistic regression and estimated models struggle to characterize the patterns present in the data. The most
consistent results appear in the bottom right corner of the plots where we have larger numbers of runs for
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Figure 52: Heatmap for winning algorithm for the shielded source 4 (60Co) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR

each of the cells. This is to be expected since the variability of the fraction correct will stabilize more with
increasing sample size. Similar patterns are observed for the 2nd and 3rd place algorithms as well.
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Figures 53 through 55 show the results for the probability of detection and identification for source 5
(99mTc).

Figure 53: Contour plots for source 5 (99mTc) for the winning competitor, pfr .
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Figure 54: Contour plots for source 5 (99mTc) for the 2nd place competitor, p kuzmin .
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Figure 55: Contour plots for source 5 (99mTc) for the 3rd place competitor, gardn999 .
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When we examine the results for source 5 (99mTc) in Figures 53 through 55, we see some more familiar
patterns.

All three competitors have a high probability of correct detection when the SNR value is large (say,
greater than 8). The near horizontal lines of the contour plots for both the shielded and unshielded versions
indicate that the speed of the detector has minimal impact on their probability of correctly detecting this
source.

Figure 56: Heatmap for winning algorithm for unshielded source 5 (99mTc) proportion correct and the
numbers inside the cells indicate the number of observations for that combination of speed and SNR

The patterns for the probability of correct identification for the three competitors exhibit considerably
differences with some of the higher speeds appearing to have better success rates. Again, it is possible to
gain some insights into how these patterns emerge by examining the heatmaps for the probability of correct
identification more locally within the region. Figures 56 and 57 provide a more detailed look at the pattern
of correct identification for both the unshielded (Figure 56) and shielded (Figure 57) source 5 (99mTc) for
the winning competitor.

The overall fraction correct in the heatmaps are better than was observed for some of the other sources,
but still there is a lack of systematic pattern connecting adjacent cells. Hence, this leads to different patterns
in the contour plots based on the estimated logistic regression models. The lack of consistent patterns across
the input space defined by SNR and speed of the detector is also reflected in the heatmaps for the 2nd and
3rd place competitors.
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Figure 57: Heatmap for winning algorithm for the shielded source 5 (99mTc) where colors indicate the local
proportion correct and the numbers inside the cells indicate the number of observations for that combination
of speed and SNR
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The final source is the mixture of HEU and 99mTc. The summaries of the probability of detection and
identification are shown in Figures 58 through 60.

Figure 58: Contour plots for source 6 (HEU + 99mTc) for the winning competitor, pfr .
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Figure 59: Contour plots for source 6 (HEU + 99mTc) for the 2nd place competitor, p kuzmin .
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Figure 60: Contour plots for source 6 (HEU + 99mTc) for the 3rd place competitor, gardn999 .
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Figures 48 through 50 show the results of the top three competitors for the combined source 6 (HEU
+ 99mTc). The probability of correct detection is the highest for this source for the top competitors, with
values exceeding 0.9 for the majority of the region. The contour lines are less horizontal for the unshielded
source, with high probabilities for even very small SNR values if the speed of the detector is sufficiently slow.

For the shielded source, the contour lines are closer to horizontal indicating that the speed of the detector
makes less difference for this case. With respect to identification, the winning competitor has excellent
performance for SNR values greater than 10. There seems to be little difference in these surfaces regardless
of whether the source was shielded or not. For the second and third place competitors, the shielded version
of the problem appears to have been more easily solved, with both of them enjoying good success for SNR
values greater than 10 or 12. However, both of them seemed to struggled more with the unshielded problem,
and were not able to achieve high correct probabilities anywhere in the region defined by the SNR and speed
of the detector.

These summaries when combined with understanding of the algorithm approaches can potentially provide
insights into how the different methods used in the solutions translate into strengths for some aspects of the
overall radiation detection problem.

93



6.2 Non-Uniform Space Filling Designs

A new type of space filling design, called a Non-Uniform Space Filling (NUSF) design, was developed [88].
The approach allows the concentration of points in the input region defined by the model parameters to be
varied to reflect different emphases of regions. The method uses a weighted distance function that adjusts
the effective weights of each of the candidate points. For the data competition, a baseline algorithm was run
on a large superset of data that would later serve as the candidate set from which designs were constructed.
A model of the probability of correct detection and identification for each of the sources across the range
of inputs was used to estimate the weights for each candidate point. Figure 61 shows an example of the
contour lines for a particular source for the probability of detection based on evaluating it with an available
baseline algorithm. From these model estimate, target probabilities of detection were specified for each of
the training, public test and private test regions, and the weights used by the NUSF methodology were
adjusted. Larger weights are emphasized more, with larger values leading to greater concentrations of design
points.

For each of the training, public test and private test sets, a region of emphasis was identified, and
then designs were created with the appropriate sample size and density of points for each of the data sets.
This process was repeated for each source with and without shielding. Figure 62 shows the three designs
generated using the NUSF approach for a given source without shielding. The yellow points represent the
input parameter combinations for the training data set. The purple points are those design locations for
the public test set. The blue points are those for the private test set. As noted, the goal of the design was
to encourage and reward the development of algorithms that were able to adapt and perform well for new
more challenging scenarios. This approach also penalizes competitors who overfit their solutions based on
feedback from the public leaderboard.

The new methodology provided more automated design construction capability and made it easier to
construct the large volumes and sizes of designs from massive supersets of candidate points.

In addition to the data competition example, we propose other situations where it can be desirable to
control the degree of concentration of data points in various regions, while still maintaining some space-filling
properties:

1. Designs with the goal of optimizing a response, while still maintaining the ability to explore through-
out the region. For example, if historical data suggest that a process gives improved yield for some
factor combinations, the goal for an experiment might be to place additional runs near this optimum
by overemphasizing this region, while still allowing for possible new regions of good performance to
be identified throughout the region. There can be advantages of improved overall estimation of a
parametric model if data are gathered throughout the region of interest.

2. Focus on interesting features. For example, consider a chemical process with a phase change in the
input region of interest. In this case, it may be desirable to over-represent locations close to the phase
change to gain additional precision of estimation in this region, where rapid changes in the response
are anticipated.

3. Focus on regions with larger variability. If historical data are available for a process, there may be
regions known to be less precisely estimated based on current information, because of model uncertainty
or sparsity of previous data. In these cases, it can be beneficial to emphasize new data collection in
these regions, while still enhancing overall estimation throughout the region.

4. Focus on regions where the function is changing rapidly. In some processes, there are known regions
where the “wiggliness” or complexity of the function is known to be much more prevalent than in other
regions. To improve precision, it is advantageous to place more data in these regions than in areas
where the surface changes more slowly.

5. Focus on regions with greater discrepancy between the computer model and observed data. In calibra-
tion experiments, data are often collected to determine the degree of matching between a science model
of the process and what is observed in nature. If historical data suggest regions with less agreement
between these two sources of information, over-representing these regions can be helpful to further
understand these inconsistencies. For example, a higher density of design points (corresponding to
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larger weights) may be desired in a region that has shown a larger discrepancy between the actual
observation and the estimate from a fitted model. The flexibility of the NUSF approach is that it
allows the practitioner to specify whatever structure is desired for the weights to achieve changes in
emphasis.

To construct a design, the following process is recommended [5]: The basic steps of the process are as
follows:

1. Select a candidate set of points from which the design will be constructed.

2. Identify preliminary weights associated with each candidate point to match the pattern of the desired
density across the input space.

3. Scale the preliminary weights into one (or more ranges) of scaled weights in the interval [1, MWR],
where MWR is the maximum weight ratio which is a user specified value greater than 1, which controls
the degree of non-uniformity. Note the scaled weights will be used to calculate the weighted distance
in the nonuniform design space. A larger MWR value results in the design points being more packed
in the higher density region. However, the impact of MWR value is affected by both the distribution
of the weight values in the design region and the number of design points.

4. Since the experimenter may only be able to judge whether the degree of nonuniformity they seek has
been achieved by considering several candidates, generate several NUSF designs based on different
MWR values.

5. Compare alternative designs to select one that best matches the design objectives.

This process was used in the construction of all of the TopCoder competition data sets generated.
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Figure 61: Example of estimated model for estimating probability of detection for one source without
shielding. The weights for the NUSF were constructed by emphasizing particular probabilities for each of
the training, public test and private test sets.
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Figure 62: Sample training, public test and private test set designs used for a particular source without
shielding.
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6.3 Comparing Algorithms with Uncertainty in Leaderboard Position

In this section, we describe a simple transparent strategy for understanding the robustness of the algorithm
performance to potential uncertainty of the competition data and propose a new strategy for more equitably
distributing the prize that reflects the close proximity of many of the final scores [96]. This new strategy
preserves rewarding the competition priorities established by the host, while still taking into account the
inherent uncertainty that is known to affect the exact value of the score. There are four ways to use the
proposed bootstrap methodology:

1. During the competition, we propose providing the competitors with a summary of the distribution of
their rankings across multiple bootstrap resamples of the public test set data. This will show them
how often they were in different prize positions, and encourage both those who are ahead and behind
to work to further improve their algorithms.

2. After the competition, we recommend using the bootstrap resampling to determine the allocation of
prize money. This will allow competitors who finished with very similar scores to be rewarded based
on the proportion of time that they were in each ranked position.

3. For the competition host, we provide numerical and graphical summaries to help them understand
which competitor results might reasonably considered “effectively the same”, and which are “notably
different”.

4. Finally, the flexibility of the resampling approach allows the competition host to explore “what if”
scenarios to see how rankings would change if some parts of the data were emphasized or de-emphasized,
or if the leaderboard scoring formula was adjusted.

The main advantages of the new approach are:

• to maintain a fixed total purse for prizes, but with flexibility for how they are distributed according to
the algorithm performance across a variety of possible data,

• to offer greater fairness to the competitors, which should be attractive to encourage broad and diverse
participation,

• to provide more informative public leaderboard feedback to reward solutions with better generalization
abilities and to help prevent overfitting to the particular set of competition data, and

• to give an opportunity after the competition is over to easily examine how results would have changed
under different scenarios with altered interests or competition goals.

The key idea of the new approach is to use stratified standard or fractionally weighted bootstrap sampling
to quantify the uncertainty associated with the scores for each competitor. This is done by obtaining data
sets that share the priorities specified by the host, but allows us to assess the uncertainty of the leaderboard
scores. For example, in the urban radiation search competition, the data sets were comprised of runs. The
relevant runs for scoring were resampled maintaining the balance of runs desired by the host, and new scores
and rankings were obtained for each new data set.

The methodology was used on the TopCoder data to understand the overlap in the competitor scores.
Figure 63 shows the range of scores from the private leaderboard for each competitor as a cumulative
distribution function (CDF). The range of scores achieved by each competitor provides information about
how much uncertainty there was in estimating their score based on a single data set. If curves for competitors
are in close proximity, this suggests that their relative position in the competition might change with a
different data set. A prominent pattern of this figure is the clustering of some of the CDF curves. It is
apparent that the top team is well separated with the 2nd and the 3rd teams with a substantially higher
private test scores across all the resampled data. Between the 2nd and 3rd place teams, even though the 2nd
place team seems to slightly outperform the 3rd place team, their CDF curves are very closely located with
considerable overlap in the ranges of the observed scores. Similar pattern can be observed for the grouping
of Teams 4-8, whose CDF curves are clustered with very similar performance ranging between 71-72 points.
The group of next tier of performance include the 9th and 10th place teams those scores generally range
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between 69-70 points. The 11th place team performs generally about 0.6-1 points lower than the 9th and 10th
place teams. The 12th place team is not comparable with the top 10 teams with scores that are generally
at least 4 points below the 10th place team.

Figure 64 shows how often different competitors ended up ranked in the various locations. The summary
serves to emphasize how dominant the 1st place competitor was as he was never any lower than 1st place
for any resample. Even though the performance of 2nd and 3rd place competitors are similar, there is still
quite a noticeable difference between the two competitors with the 2nd place competitor outperforming
the 3rd place competitor more than 85% of all the resamples. Among competitors 4-8, the 4th and 5th
place competitors generally outperform competitors 6-8 with the latter having closer performance among
one another. The 4th place competitor finished in 4th for more than 60% of the resamples, while the 5th
place competitor finished in 4th approximately 35% of the resamples. Competitors 6, 7 and 8 each finish in
4th a small (but non-zero) fraction of the time.

The ranking of competitors 9-10 are reversed for about 17% of the possible resamples while the 9th place
competitor still outperforms 10th place competitor 83% of the time. The 11th place competitor is rarely
among the top 10 except for a very small fraction of possible scenarios (in about 5.9% cases he ranked as
the 10th place). The 12th place competitor is never ranked among the top 10 teams across all simulations.

Figure 63: Distribution of competitor private leaderboard scores across similar datasets that preserve the
emphasis on different sources.

Given the considerable differences in the prize money for each place in the competition, we provide a new
prize distribution strategy that more directly considers the robustness of algorithm performance to different
possible data and offers a fairer allocation of the prize money that reflects the different places achieved by
the competitors in the many resamples of the data. The idea is to distribute the total prize money for all
rankings evenly across the large number of bootstrap resamples, then allocate the designated prize money
based on the ranking of the teams for each resample, and finally add up the allocated “per resample prize
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Figure 64: Summary of the different rankings achieved by the top competitors across the bootstrapped
similar data sets.

money” across all the resamples to obtain the total adjusted prize for each team. This strategy ensures a
fixed total purse of money and allows flexibility to distribute the money based on a fairer evaluation across
many possible data from the general problem.

Figure 65 shows a summary table of the hypothetical prize allocation if the suggested methodology had
been used. compares the original prize and the adjusted prize based on the proposed new strategy. Because
of the dominance of the competition winner in each of the resamples, we see that the leading competitor still
receives the exact total amount at $25,000 since he was never in the 2nd place across all simulations. Since the
2nd and 3rd place competitors switched their rankings for about 15% of the scenarios, the adjusted prize for
the 2nd place competitor has been reduced for $380, which is awarded to the 3rd place competitor. Hence
there is a proportionate blending of the two prize amounts to reflect that competitor 2 does not always
dominate competitor 3. Similarly, the prize for the 4th to 8th place competitors have been rebalanced
with the 5th, 7th and 8th place competitors’ prizes increasing by $1194, $95, and $903, respectively to the
detriment of competitor 4, to reflect the proportion of times that each team spent in each of the ranks. The
prize for the 9th place competitor was reduced by $165, of which $150 has been reallocated to the 10th
competitor and surprisingly $15 would have been given to the 11th place competitor, who originally did not
receive any prize money, but occasionally appears among the top ten in the simulations.

The goal of the new prize allocation is to capture the intermingling of the ranks for the different teams
across the resampled data sets, and to temper the extreme differences between the prize amounts between
places when teams have similar performance.
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Figure 65: Hypothetical prize redistribution under the resampling methodology proposed.
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6.4 Pareto Fronts for Assessing Subsets of Competition Criteria

In many data competitions, prizes are awarded for excellent performance across a number of different objec-
tives. In order to rank and make direct comparisons between competing solutions, the scores need to be a
scalar that combines the different aspects of the competition into a single number. For the urban radiation
search competition, multiple different objectives were simultaneously considered using simulated data.

To create the leaderboard scoring formula, each of these objectives was first quantified and then combined.
Considerable thought and planning went into developing the right balance of these objectives as this is known
to have an important effect on the priorities that the competitors place on improving different components of
their algorithm. Regardless of how well the host formulates the leaderboard, it represents just a single way of
combining the different objectives into an overall score. This predetermined formula drives the development
of competition solutions towards the intended balance between the multiple objects of interest. This setup
is typical of many data competitions where multiple objectives, with potentially different importance, are
assessed through the available data presented to the competitors. Being able to uncouple the contributions
of each objective and evaluate the ability of each solution to perform are important for understanding the
merits of the available alternatives.

When the competition concludes, the host generally gains access to the winning solutions with the goal
of implementing them for use in new scenarios. To take advantage of the financial and effort investment in
the competition, the host would like to be able to select the best solution for variations of the problem that
fall within the scope of the competition. This might involve only a subset of the objectives and might prefer
a different emphasis on the objectives than was originally captured in the leaderboard scoring formula.

Here we outline an approach to understanding the relative merits of different competitor algorithms, and
provides a path to select the most appropriate one for implementation in a new scenario. The approach is
general enough to allow different subsets of objectives to be the focus, with the best solutions identified for
a variety of emphases of the objectives [97].

Once the competition was completed, a set of summarizing criteria was identified in the post-competition
analysis to evaluate the competitor’s performance on different objectives of detection and identification across
different types of sources and no source scenarios. Analysis revealed there was little to no difference between
competitors on the locate aspect – if they were able to detect or identify a source in the run, then they were
able to correctly locate it. Hence, it was not considered to be important to distinguish between the different
solutions. This is an important strategy to reduce the dimensionality of the problem. If some criteria do not
offer any practical distinction between top solutions, they can be removed from further consideration. The
objective metrics considered for different scenarios of interest include:

1. S1D,. . . S6D – proportion of each of the Source runs correctly detected. Range [0,1]. Maximize.

2. S1, . . . S6I – proportion of each of the Source runs correctly identified. Range [0,1]. Maximize

3. NoS – proportion of no source runs correctly labeled (FPR = 1 – NoS). Range [0,1]. Maximize.

4. AveD – average proportion of sources detected (over all 6 sources). Range [0,1]. Maximize.

5. AveI - average proportion of sources correctly identified (over all 6 sources). Range [0,1]. Maximize.

6. Score – private test score (considered a proxy for robust overall performance). Range [0,100]. Maximize.

Pareto fronts [98] [99] [100] can objectively eliminate non-competitive, or dominated solutions. One
solution is said to dominate another if all of its criteria values are at least as good as those of another
solution with at least one of its criterion value being strictly better. For example, if we seek to maximize
both S1D and S1I, one algorithm dominates another if the former has both S1D and S1I at least as high as
the latter, and at least one of S1D or S1I is strictly higher. After this objective stage, determining the best
solution for a particular balancing of the criteria involves using some graphical tools to compare between
the alternative Pareto front (PF) solutions to identify one that works best for the subjective prioritization
of the scenario.

We now consider multiple possible scenarios identified as being of potential interest. For many data
competitions, it is likely that all of the objectives in the leaderboard scoring formula are not of equal
importance and may not be relevant for all problems under consideration. It is helpful to define the sets of
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subsets of useful combinations of the objectives and explore the performance of the competitors’ solutions
for each of them. This helps to provide insights into the diversity of solutions that have been obtained, and
gain understanding about the strengths and weaknesses of each approach. Since having a high false positive
rate (FPR) is highly undesirable for this competition, we eliminate all of the solutions that have a FPR
greater than 5% from further consideration.
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Figure 66: Results for 23 2-criterion Pareto fronts, based on different collections of the solutions.
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Figure 66 shows a table of 23 2-criteria scenarios of potential interest to the experts. As you can see,
not all 16 choose 2 combinations of the criteria are of interest, but the scenarios identified consider sensible
pairings of criteria that might arise for possible implementation. In selecting the subset of scenarios, score
was treated as a proxy for good robust overall performance across all 16 criteria. Many of the combinations
consider a low false positive rate (or large NoS value) in combination with one other criterion. This reflects
the emphasis on not having too many false alarms to hinder effective implementation. Other pairs of criteria
focus on a single source, which might reflect a scenario with the goal of tracking that source.

There are three Pareto fronts described for each scenario. The “Available” column considers the final
submission from each of the top 10 prize winning competitors. The “Top 10” columns describe the results
based on all 604 submissions from any of the prizewinners. Finally, the ”All” columns include all of he 1037
submissions from all competitors. There are columns for the number of solutions on the Pareto front, as well
as the number of competitors with at least one submission on the front.

Figure 67: Barplot of the representation of different competitors on the Pareto front for each of the 2-criterion
scenarios.

Figure 67 shows the frequency with which different competitors appear on the Pareto front for the
different scenarios described in Figure 66.

The first place finisher’s solutions appear on the PFs for 22 out of the 23 scenarios. The only scenario
for which the top winner’s solution is not included on the PF occurs when the primary focus is for detecting
source 4 while controlling the FPR (scenario A14). Also, for 12 out of the 23 scenarios, only solutions from
the winner, pfr, appear on the PF. Most of these scenarios focus on detecting source 2 or 6, identifying
source 3, or using the overall score or the average detection or identification rate across all sources, while
balancing the FPR. On the other hand, when the focus is on other sources, other prizewinners become more
competitive. For example, the 2nd place finisher does well for detecting sources 1, 3, and 4. The 8th and
10th place finishers are also competitive for detecting sources 1 and 4. The 4th place finisher does quite well
on identifying sources 4 & 5. And the 5th and 7th place finishers seem competitive at detecting source 5
and identifying source 1.
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Figure 68: Results for 16 3-criterion Pareto fronts, based on different collections of the solutions.
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Figure 69: Barplot of the representation of different competitors on the Pareto front for each of the 3-criterion
scenarios.

Other scenarios involving 3 criteria are shown in Figures 68 and 69. We see that the prizewinners’
solutions still generally dominate most of the competitive choices on the PFs across all the scenarios of
interest. For half of the cases, the first place finisher has all non-dominated solutions for situations focusing
on the overall score, average performance across all sources, or individual scenarios concerning identifying
sources 2, 3, or 6. In contrast, when source 1, 4, or 5 is of interest, other prizewinners become competitive.
This confirms that the leaderboard scoring formula did a great job of selecting the best solutions across a large
number of objectives and scenarios. However, when it comes to a particular implementation scenario, more
tailored solutions can be identified by carefully examining the merits of solutions for a subset of important
objectives.

We also consider some scenarios with larger numbers of criteria. The tables in Figures 70 and 71 describe
some higher dimensional Pareto fronts. The accompanying barplots for these scenarios are shown in Figures
72 and 73.

By comparing the different scenarios, we observe some general patterns. First, the top place finisher
dominates across many scenarios. This is not surprising given this competitor finished with the highest
overall score and a big margin of victory over the second place finisher, and when seeking general solutions
the leaderboard scoring for data competitions typically favors solutions that offer a good balance between
multiple objectives of interest. Second, the richness of the PFs (i.e. the number of solutions on the PFs)
generally increases as (a) the number of available solutions increases (as we move from Case 1 (with only
the final submissions of the prizewinners) through Case 2 (all submissions from prizewinners) to Case 3 (all
submissions from all competitors) for each scenario), and (b) the number of criteria increases (as we move
from group A to D of various scenarios). Third, the number of competitors associated with the solutions on
the PFs also grows as the number of criteria increases (as evidenced by more colors in the barplots as we
move from two to 5+ criteria scenarios).

In addition, some general patterns about the strengths and weaknesses of each top competitor emerge
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from examining the barplots. For example, the top place finisher has dominating performance on detecting
and identifying sources 2, 3, and 6 as well as controlling FPRs, but is not quite as competitive on detecting
or identifying sources 1, 4, and 5. The 2nd place finisher shows strength in detecting sources 1, 3, and 4.
The 4th place finisher does well identifying sources 4 and 5. The 5th and 7th place teams are competitive in
detecting source 5 and identifying source 1. These observations can help subject matter experts understand
the strength and weaknesses of each competitor’s solutions and choose the best algorithm for specific scenarios
where only a subset of the criteria are of primary interest.

Figure 70: Results for 4-criterion Pareto fronts, based on different collections of the solutions.
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Figure 71: Results for 5 or more criteria Pareto fronts, based on different collections of the solutions.
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Figure 72: Barplot of the representation of different competitors on the Pareto front for each of the 4-criterion
scenarios.
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Figure 73: Barplot of the representation of different competitors on the Pareto front for each of the 5 or
more criteria scenarios.
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7 Description and Exploration of the Winning Algorithms

In this chapter we explore the approaches used by the top TopCoder competitors. The top 10 competitors
were eligible for cash prizes with the requirement that they provide their working algorithms within a
Dockerized image along with a writeup describing their methodology. We have then used this material to
evaluate different approaches that yielded good results, identify best practices, and to consider whether
portions of these algorithms merit further study.

It should be noted that the quality of the code within the Dockerized images, as well as the quality
and clarity of material in the writeups, varied widely. Some of the competitors followed best practices
of commenting and organizing their code, while also using clear input configuration files to modify their
algorithms, enabling deeper study and perturbative analysis. In this chapter we first provide an overview
of the scores and methods used by the competitors, we then provide a detailed examination of the top
5 prize-collecting competitors approaches. We then discuss a high-level evaluation of the top algorithm
and best-practices that were followed. Finally, we describe several model-introspection analyses that were
performed to explore and understand what the Machine Learning methods employed were learning, how
perturbation of algorithm configurations impacts scores, and thoughts regarding ”deploy-ability” or ”field-
ability” of these algorithms or modifications of them.

7.1 High-level summary of the Top Ten

The top ten submitted algorithms were selected for analysis and comparison. Two of the top scoring
algorithms were not submitted for prizes so lowering scoring competitors were promoted into the top scoring
leaderboard as shown in Table 7. Within these leaderboard, several groups emerged as ranked by their
final score (and by the bootstrapping analysis presented in the previous chapter). These four groups are
delineated by the dashed lines in Table 7. The competitor submitted writeups are included in the appendices
for reference.

Table 7: The final top 10 competitor leaderboard. Two competitors (marked with “∗”) placed in the
top 10 but did not submit their algorithms so the lower scoring competitors made the top 10. The final
score shows 4 clusters of competitor’s performance which we note with with dashed lines. Source: https:

//www.topcoder.com/challenges/30085346?tab=submissions.
Final Provisional Username Writeup Final Provisional Decision Neural Likelihood
Rank Rank Appendix Score Score Tree(s) Net(s) Testing

1 1 pfr A 76.4289 90.26718 X
2 7 p kuzmin B 73.6693 86.67468 X X
3 3 gardn999 C 73.42755 87.45759 X
4 2 rayvanve D 71.83693 87.88757 X X
5∗ 15 pkbrk9 — 71.82177 82.47646 — — —
6 6 cyril.v E 71.7367 86.82956 X
7∗ 5 mike.grosskopf — 71.47615 87.12627 — — —
8 4 wleite F 71.38198 87.41077 X
9 9 smg478 G 71.33487 85.62803 X
10 11 cannab H 69.66863 84.57155 X
11 8 pasda I 69.42755 85.69036 X
12 21 ZFTurbo J 68.63695 78.64455 X

The top competitors implemented a wide–range of cutting–edge machine learning approaches using open
source frameworks to architect their algorithms. The majority of these algorithms use recent advancements
in artificial neural networks which leverage hardware acceleration on GPU’s to train and evaluate results. In
addition, some competitors used decision trees to process the output of the neural network(s) while others
used them for a stand–alone solution. Almost every competitor used some ensemble of independently trained
neural nets and/or decision trees with a final solution calculated from combined outputs as shown in the high
level overview in Figure 74. It is worth noting that while 9 out of 10 of the submitted algorithms utilized
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general machine learning approaches, pasda (in 11th place) used a statistical likelihood estimate from the
listmode data to detect, identify and localize. A summary of this approach can be found in Table 8.

Engineered 
Features

- mean
- min
- max
- skew
- kurtosis

Dec ision Trees

Neura l Networks

Conc a tena te 
Input

Sourc e ID & Time

Threshold  & 
Vote

No Sourc e

Dec ision Trees

Figure 74: General approach used by 9 out of 10 top competitors.

Many neural network architectures were implemented which ranged from custom convolutional networks
like that of pfr (in 1st place) to more general networks developed for object detection in images: UNET
[101], ResNet50 [75] and DenseNet121 [102]. Three competitors attempted to use neural networks with
some memory to leverage the time evolution of each spectra during the run but all concluded that their
convolutional approaches performed better and required less hyper–parameter optimization when this mem-
ory was removed. Of the convolutional networks implemented, the best performing were single dimension
kernels in energy which were convolved along the time dimension of the input waterfalls. This is also true
for the highest performing 2D convolutional layers which has kernel sizes that almost spanned the entire
energy bin range. All neural network approaches use one of the more common frameworks with a Python
interface: PyTorch or Keras (with a Tensorflow back–end). Most competitors implemented techniques to
avoid network over–fitting while training. These included changes to the network architecture like dropout
to reduce the number of features between convolutional layers, input regularization (L1 normalization and
mean–subtraction) and output regularization (softmax and log–softmax).

The decision trees used by competitors fall into two categories (1) random forests [103] and (2) gradient
boosted machines [104]. Both are typically used for categorization tasks (like source detection and identifi-
cation) and don’t require a discrete GPU like neural networks. Two competitors (gardn999 and wleite )
used pure Java implementations of binary tree random forests for their entire approach. Both built a forest
for each source type which processed input spectra (and engineered features in the case of gardn999 ) and
returned weights per each source over each integration time. Other competitors (p kuzmin , rayvanve ,
and smg478 ) used Light Gradient Boosted Machines (LGBM’s) [104] in conjuction with neural networks to
process input data and/or the neural network output for further classification. LGBM’s are a relatively new
decision tree implementation which is heavily optimized for parallel CPU and GPU computation and offers
a convenient Python package for simple passing of data between neural networks and the boosted machines.

While the design of each algorithm differed, the competitors selected similar data representations for their
algorithm input(s). With the exception of pasda (as mentioned above) all competitors chose to discretize the
listmode event data into energy spectra for constant integration times through each run. Each competitor
chose a different energy bin structure with most opting for bin widths that increased with energy to mimic
the increasing energy resolution (and decreasing count-rate). This is a commonality with classical template–
based detection and identification algorithms which also use bin structures which aim to make the ratio of
energy bins per energy resolution constant across the spectrum. These spectra were analyzed individually or
more commonly as a “waterfall” 2D histogram to leverage the energy and time information in the listmode
data simultaneously. The waterfall matrix allows the application of approaches from other fields since this
data representation is analogous to a grayscale image or an acoustic wave spectrogram. Since the input to

113



neural networks and decision trees is typically a fixed size (number of time and energy bins) competitors
either fixed the integration time and analyzed a time window of data across each run or fixed the number
of time bins such that each run was always the same input size and the integration times varied. Before
providing the spectra to neural networks or decision trees, several competitors applied smoothing kernel
(boxcar, gaussian, or ricker) to reduce noise between adjacent bins at the expense of the intrinsic counting
statistics. Only pfr use binomial resampling of each bin to scale the spectra while maintaining the underlying
count variation. In addition to the energy spectra vs time input, multiple competitors engineered statistical
features from the data which were provided alongside the histogrammed events.

As previously discussed, the algorithm objectives were to determine the presence of a source in each
run and, if so, identify the source type and time of closest approach. Since the competition scoring gave
partial credit to source detection and incorrect identification, the common approach was a multi–tiered
algorithm which first detected the presence of any source before determining the source ID or time. Some
built completely separate components to solve each task such that the first objective as binary classification,
the second was 6 source classification and the third was timing determined from source likelihoods over
time. Instead of this more complex approach, most built a single algorithm which would output 6 source
likelihoods (weights) for each time window and aggregate these for detection and identification tasks. This
allowed detection even in cases where the energy spectrum was significantly perturbed due to environmental
scattering such that identification was difficult. While the simple binary or six label classification tasks
have clear targets for training (one for the correct class and zero otherwise), the training targets for the
time–dependant source weights proved more challenging. While all the time bins could be given the same
weight for a training run with a source, each competitor took a more prudent approach of training against
a target vector which maximized the source weights at the time of closest approach. Some took this a step
further to determine the width (number of time bins around the time of closest approach) in which they
declared the source “present”.

Another commonality between the top approaches was the prioritization of detection and identification
which multiple competitors referred to as the easier objective. The time of closest approach determination
seemed to be an after–thought for most competitors who determined it was likely easier to optimize for
accurate detection and identification instead of timing. Nearly all competitors used the maximum or a
weighted average of the time dependant source weights to determine the closest approach time. The accuracy
of this method was influenced by the time dependant training labels mentioned above and, to a larger extent,
the count rate asymmetry of some of the runs due to large occlusions before or after the time of closet
approach. These asymmetries caused the weighted average of time by source likelihoods to skew away from
the true time of closest approach.

Most competitors used an ensemble of networks and/or decision trees (up to 30 as with pfr ) which
were trained on different portions of the training data to harden the approaches against over–fitting. This
was a clear advantage in the higher performing competitors while several of the lower performers mentioned
they likely would implement this in future work. A couple competitors also reversed the driving direction
to further improve the diversity of the training data when repeating training with the same (or overlapping
portions of) training data.

For inference (executing the algorithms) the testing data were pre–processed and smoothing (if used for
training) was applied. While the training labels may have been ones and zeros, the output from most of
the aforementioned approaches was a normalized range. In a classical algorithm, a threshold for detection
and identification would be determined from processing many background (source free) runs and choosing a
threshold based on a desired false alarm rate (FAR). None of the competitors took this approach (although
some mentioned it in their write–up) and instead set the thresholds empirically based on trial and error with
some limited probing of the leaderboard to optimize for their provisional score.

A detailed summary of the top 10 approaches is provided in Table 8.
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Table 8: Winning Algorithms Overview.

Competitor
Hardware/
Software

Requirements

Uses
Source

Templates

Uses
Speed/
Offset

Train/
Test

Hours

Input
Data

Processing

ML
Approach

Cross
Validation

pfr

Nvidia GPU
Python
PyTorch

X 7.1/0.2
40, 80, 160 time bins

Non–linear energy bins

Ensemble of 1D CNN’s (x30)
3 time scales

Thresholded output

Ten 90% splits repeated 3 times
Driving direction reversed

Binomial resampling of counts

p kuzmin

GPU
Python
Keras

1.8/0.4
1 second 50 keV binned spectra

Listmode statistical features
3 1D CNN or MLP Ensembles

LGBM classifiers
5 training splits

gardn999
CPU
Java

0.6/0.3
Square root energy bins

0.5s time bins
Listmode statistical features

Random forest per source 8 training splits

rayvanve

CPU or GPU
Python
Keras

X 12.5/11.8
Multiple energy bin structures

Multiple constant time bin widths
2D gaussian smoothing

Compare spectrum to source template
2D CNN over time window
Random forest classifiers

No training splits
Feature selection for RF’s

cyril.v

GPU
Python
Keras

3.8/0.4
Constant 0.5 s time bins

Log(E) bin widths

1D CNN’s passed into LSTM
Model 1 for det/ID

Model 2 for coarse time
Model 3 for fine time

Driving direction reversed
10 CV splits during training

wleite
CPU
Java

X 11.8/0.9

800 energy bins
3 time binnings (overlapping)
Ratio of adjacent time bins

Boxcar smoothing

Random Forest per source/time
Det/ID from top time score

Timing from weighted average

50% training splits
Separated 1500 “harder” cases

smg478

GPU
Python
Keras

X 1.8/7.1

30keV energy bins
3 time binnings

(fixed events, 1/30 total time)
Peak–to–peak ratios

Peak–to–compton ratios

5 CNN+MLP Models
7 Output Classes

Det/ID from voting
Coarse timing from max NN output
Fine timing from max peak counts
Tried LGBM and LSTM (not used)

5 training splits

cannab

Nvidia GPU
Python
PyTorch

X 84.0/4.3
81 Time Bins

81 Energy Bins
Listmode features

1D DPN68 [105] for Det+ID and speed
1D U-Net [101] for time

Averages ensemble and applies threshold
Mentions LGBM (not enough time)

2 training splits
Shift/scale listmode features

pasda
CPU

R
X 0.2/2.9

Source templates to 0.5keV PMF’s
50/50 mix of source 6

Background 0.5 keV spectrum PMF
Source training data not used

Source–to–background probability ratios
Ratios for each event and source
Kernel regression (across time)
Source/Time from max statistic

Set threshold by leaderboard probing

n/a

ZFTurbo

GPU
Python
Keras

51.6/22.1
Raw energy and time used

Listmode features
32768 events per input

3 Conv1D models for Det/ID
RNN model for timing

UNET/ResNet50/DenseNet121
Outputs averaged and thresholded

Used to set threshold
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7.2 Deep dive into the top five algorithms

In the previous section we provided an overview of the top ten competitors’ approaches. Here, we aim to
gain a better understanding of the top 5 approaches through the dissection of each algorithm, starting with
the submitted report and then reading the source code. We discuss the details of the input data preparation,
the machine–learning techniques used, the algorithm structure, the training methodology and the output
post-processing to finalize results. We compare these approaches to best practices from subject matter
experts 2.2. We identify machine–learning best practices which were used and point out those that were
not. Finally, we discuss each algorithm’s potential (or lack thereof) for modification to meet operational
deployment requirements.

Our workflow in performing this assessment included using multiple software development and analysis
tools. TopCoder provided each competitor’s code, report and Dockerfile in a GitLab repository which
were each forked into a development group (https://gitlab.com/urban-radiation-detection-dev) for
further analysis. Each repository’s development branch was used to add tools like Jupyter notebooks and
neural network introspection libraries to facilitate analysis of each stage of the algorithm. We used Docker
to quickly reproduce the development environment for each competitor to rerun their algorithm and analyze
the components in place. These portable environments (containers) could then be used for local development
before before deploying on Amazon Web Service (AWS) machines enabled with high performance GPU’s
necessary to train the neural networks.

This approach proved successful for some algorithms (most notably the first place approach from pfr )
whose source code could be read while following the write–up as a guide. For a subset of the competitors our
introspection was limited by an inadequate write–up, sloppy code and/or ad–hoc combinations of methods
and concepts. The results of our analysis are presented in the following sections.

7.2.1 01-pfr

The first place competitor (pfr ) submitted a well organized and flexible algorithm to rise to the top of the
leaderboard by a healthy margin. In fact, pfr only joined the competition in the final 36 hours and their first
submission would have still beaten all other competitors. They implemented a large (30 network) ensemble
of multi–layer convolutional neural networks with robust data preparation and augmentation to avoid over–
fitting to the labelled training data and ensure a more generalized final product. They used PyTorch to
construct their networks and Numpy/Pandas to prepare the input and post–process the output into a final
solution. The submission is divided into multiple components: (1) raw CSV listmode pre–processing into
binary formatted listmode data rounded to 2keV, (2) a loop to train 30 individual neural networks across a
fixed energy binning and 3 time binnings, (3) a loop to execute the ensemble of networks with the testing
data, and (4) a final aggregation step to process the network ensemble output for detection, identification,
and timing. All of these components are structured into a local Python library with a set of structured tools
for executing each stage with local code reuse to avoid unnecessary repetition. Finally, the algorithm hyper–
parameters (network size, number of convolution layer features, training configuration, etc) was controlled
from a straightforward YAML specification.

Like most other competitors, pfr converted the raw listmode event data to a energy vs time “waterfall”
histogram. Since the first 30 seconds of data were known to not contain a source, this data was dropped
from all further analysis. They used a non–linear energy bin structure of 186 bins from 0–2.811MeV with an
overflow bin. Instead of using a computationally expensive histogram operation, they grouped the energies
starting with the base binning of 2keV from the pre-processing stage. The energy binning was then defined
as regions of increasing combinations of the base binning (2keV, 4, 8, etc) as shown in Figure 75 They took a
unique approach to assuring the same input shape for the network by fixing the number of time bins instead
of the integration time. This meant that the input waterfalls has different integration times based on the
duration of each run but the same input size so they could be batch processed together.

The waterfalls were stacked into batches (as is typical for efficient training and executing neural networks)
and were input to a neural network with a sequence of 1D convolutional layers with activation between layers.
The convolution layers consisted of multiple feature kernels of size 3 (time bins) by 186 energy bins by number
of features. The first (so–called embedding) layer converted the count data across energy bins and 3 time
bins to 32 features (an example of the layer convolution kernel is shown in Figure 82.) These 32 features
were then feed into a sequence of 6 1D convolution layers with 40 features followed by rectified linear units
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1 Preprocessing

1.1 Energy binning

Energy binning was performed according to a manually constructed scheme. The goal was to minimize
the number of bins in order to reduce unnecessary degrees of freedom for the learning algorithm, while
maintaining separation of energy peaks from both natural and non-natural sources.

It was apparent that the simulation was performed at discrete 2 keV energy steps, so a first step bins
the simulation results according to this grid, rounding any ambiguous values (namely, odd integer
energies such as 13.0 keV) alternatively up or down.

Next a number of thresholds were selected so that energy levels above each successive threshold have
the binning step doubled, that is, their energy resolution halved:
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Figure 1: Energy binning scheme

The resulting scheme is approximately logarithmic, with 186 bins defining a slope on the order of
100 bins per decade of energy. The slope decreases rapidly beyond 1.8 MeV due to decreased signal
level in that range. The last bin covers all energy levels above 2.811 MeV. This was entirely selected
a priori based on the shapes of the spectrum of natural and non-natural sources after broadening by
the NaI(Tl) detector, and was not refined based on neural network performance.

It is likely that a simpler exactly logarithmic scheme would perform well.

1.2 Temporal binning

The algorithm operates at three distinct scales, binning the temporal span of the entire run into 160,
80, or 40 steps. This length was chosen so that the characteristic duration of the threat signal would
be on the order of 4 steps in at least one of these scales.

Normalizing the scale with respect to the entire run length has the benefit of reducing the range of
temporal scales that need to be examined. In a real-world scenario with no definite run length, the
equivalent would be to normalize with respect to vehicle speed, e↵ectively turning temporal steps
into spatial steps, but this wasn’t an option in this contest as vehicle speed was not provided.

2

Figure 75: Non–linear energy bin structure used by pfr .

(ReLU) as the source of non-linearity. The final stage was another 1D convolution layer with 6 features to
represent the likelihood of each source at each time bin.

This network, shown in Fig. 76, was used for 3-time binnings starting from the initial 160 bins, then 80
and 40. The usage of multiple time structures allowed the same neural network to be sensitive to encounters
at different speed to standoff ratios in which the counts from the source encounter varied in duration. The
output from network for each input were flattened such that the length of each network output was the
number of time bins times 6 sources. These outputs were concatenated with a one appended at the end
before application of a LogSoftMax normalization. The extra entry enforced small LogSoftMax values for
the other 1680 entries when a source was not present.
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Figure 76: Schematic of the first place algorithm including the multi–layer 1D CNN neural network at
different time scales and final classification based on the output.

For the source training cases, the target weights were set to a normalized boxcar centered at the time of
closest approach for only one of the integration times and the appropriate source. The width of the boxcar
and integration time were chosen by a heuristic which included the speed/offset ratio from the provided
scoring data which only two other competitors took advantage of (wleite and cannab ). The target for
background only cases contained all zeroes except for the final entry.

A total of 30 networks were different splits and augmentations applied to the labeled training data. The
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data was split into 10 groups of 90% training and 10% validation. These groups were not stratified (divided
into even numbers of each class) which may have decreased performance since each network was trained
on different ratios of each target class. Each group was use to train 3 different networks. Each waterfall
had it’s counts resampled from a binomial distribution with a success ratio chosen from 0.25, 0.6 or 1.0.
Additionally, the direction of the waterfall was randomly reversed. Training was performed using Kullback–
Leibler divergence to calculate loss for 40 epochs with a learning rate decreased after epoch 20 and 30. No
early stopping was implemented which may have decreased performance since the final network may have
had a larger loss metric than that of earlier epochs.
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Figure 77: Ensemble of networks in the first place algorithm from pfr .

The final ensemble of 30 networks were used in sequence for inference on test data (Figure 77). Each
network reported 1681 features from the final LogSoftMax (as shown in Fig. 76) which were exponentiated
(into probability space), averaged across the ensemble and then transformed back into log–space. Since the
following analysis occurred in probability space instead of log space, the author has omitted the explicit
conversion from log to probability space by the exponential operation. The final entry (which was hard–
coded to 1 before the LogSoftMax) was used to determine the presence of a source. If the final entry was
greater than 0.65, no source detection was reported. Otherwise, the remaining 1680 source probabilities were
expanded to the finest integration time (the largest number of time bins) via repetition (upsampling) before
source ID and time determination. The expanded probabilities were then summed across all integration
times and time bins to determine the most likely source ID. The competitor noted that the ID determination
would have made more sense with the unexpanded probability but went on to state that the effect should
be negligible. To find the time of closest approach, the expanded source probabilities for each integration
time were weighted by the inverse of the square of the number of time bins vs coarsest number of time
bins (i.e. the 160 time bins probabilities were scaled by 1, the 80 time bins were scaled by 1/4 and the 40
time bins were scaled by 1/16). The re-scaled probabilities improved the determination of closest approach
time by emphasizing the finest integration times with the highest timing precision. The expanded and
scaled probabilities were then summed across different times and source ID’s, followed by smoothing with
a Gaussian kernel with σ = 7 time bins. Finally, the center of the time bin with the maximum value was
reported as the source time.
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7.2.2 02-p-kuzmin

In contrast to the first place approach from pfr , p kuzmin took a more ad–hoc approach with a more
complex two stage algorithm with different ensembles for detection, identification and timing in the second
stage. The stages used both neural networks implemented with keras/tensorflow and light gradient boosted
machines (LGBM’s). Unlike pfr ’s approach, p kuzmin also used features engineered from the listmode data.

Some pre–processing was applied to the raw listmode input to extract features to use for algorithm
inputs. The data was aggregated to 1Hz with 49.575keV energy bins (FWHM at 661.7 keV) up to 3.2MeV
(the competitors note that there are few events beyond this range). If the run was found to contain a source,
the next level 2 component determined the time of closest approach.

Within each of these 1Hz segments, multiple statistical features were engineered from the listmode data
including the mean, max, min, median, standard deviation, and skew of the (1) time between events and
(2) energy between events, as well as the gross counts in 1 second window minus 1 (the delta times were
counted.) A diagram of this approach is shown in Fig. 78 and described in more detail below.

Figure 78: Schematic of the second place algorithm from p kuzmin .

The first stage was an ensemble of multi–layer perceptrons (MLP’s) and LGBM’s. The 1Hz engineered
features (13 total) and spectra (64 bins) were used with separate models for source detection and classification
(ID). The engineered features were used in a four layer MLP with decreasing features (128, 64, 32, 6), ReLu
activation between the layers and a final sigmoid activation on the final binary output. Additionally, the
engineered features were used by a LGBM to also predict the presence of a source. The spectra were used
in a MLP and LGBM to output a detection likelihood as well as another MLP and LGBM pair to classify
the source ID (6 normalized outputs). The spectral detection MLP has the same structure as the one for
engineered features. The spectral identification MLP also had the same structure except for the final layer
which output 6 features with a SoftMax. Five of each model were trained against binary labels for a total
of 30 level 1 models. The detection and identification outputs from each set of 5 models were averaged and
the means were concatenated for a level 1 output vector of 16 features for every 1 second time bin across all
runs (1292411 samples).

The first of three components for the second stage was designed to detect the presence of a source before
continuing to the identification and timing stages. The spectra were reduced to 16 bins (200keV each) and
concatenated with the 16 level 1 features. Each of the 32 features were re-scaled between [-1, +1] using
the minimum and maximum across all 1292411 time bins. The re-scaled features for each run were then
smoothed with the maximum of a temporal continuous wavelet transform with widths of 1–30 channels.
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Lastly, the waterfall (time-series) of features for each run was zero padded to 1024 time bins (the final
shape per run was 1024× 32). This waterfall was passed to a multi–layer 1D convolutional neural network
(over time) with activation, dropout and an attention layer [106]. The output of this network was a binary
detection with sigmoid activation for each of the 1024 time bins per run. The run was determined to contain
a source if the mean of the time dependant binary detections was greater than 0.5 (this was an empirical
threshold based on trial and error).

If the run was found to contain a source, the next level 2 component determined the time of closest
approach using the same level 1 features and spectra used in the previous component. The 16 features
and spectra of 64 energy bins were concatenated and re-scaled between [-1, +1] using the minimum and
maximum across all 1292411 time bins. Approximately half of the training runs were cropped to a random
time at least 30 seconds before the source time and at least 10 seconds after. If the run was shorter than
would allow for this time padding, the min/max time was used. Then the features and spectra for each
run were interpolated (up–sampled) to 1024 time bins such that the effective integration time was less than
1 second. The resultant feature and spectra waterfall was input to a 1D UNet CNN [101] with internal
features increasing from 64–1024 and then decreasing down to 1 feature for each time bin. All Conv1D
kernels have a width of 3 time bins except for the final layer, the LeakyReLu function is used as activation
between Conv1D layers, 50% dropout was used between some layers and the final output was activated with a
sigmoid function and values below 80% of the maximum were set to zero. The predicted time was calculated
from an average of the time bin centers weighted by the network output. For training, the output target
was generated from a normal PDF, centered on the ground–truth time, which was masked at a randomly
selected threshold between 0.004–0.24. This resulted in a boxcar target of ones around the ground–truth
with a half–width of 1.7–3.3 seconds and zeros elsewhere. Training was performed with stopping criterion
determined by average of a per–run score calculated from the cross–validation output. This score was -2 for
times farther than 4 seconds from the ground–truth or calculated from a cosine function which peaked at the
ground–truth and decreased to zero at ±4 seconds. The training learning rate was decreased by 40% every 2
epochs to a minimum of 1% the original rate. This training loop was stopped after 10 epochs without score
improvement. Five models were trained for each stratified (equal label distribution) and shuffled 80/20 cross
validation split for a total of 25 models. For testing, the predicted time was calculated from the average of
the times weighted by the network output and any times below 26 seconds were set to 0.

The last of the level 2 components determined the source ID using the level 1 features and spectra like
in the previous component. The level 1 features calculated from the engineered features were not included
such that only 14 features were used. Metrics (mean, median, max, min, standard deviation, and skew)
were calculated from the time–dependent 14 features and 64 energy bins. These 468 (6× (14 + 64)) features
were fed into a LGBM with 6 outputs corresponding to each source type. One model was trained for each
stratified (equal label distribution) and shuffled 80/20 cross validation split for a total of 5 models. For
testing, the predicted source class was calculated from the maximum of the averaged outputs from the 5
models.

This approach was complex, contained many nuances not included or explained in p kuzmin ’s write–up
and still resulted in a lower score than pfr . In contrast to pfr , p kuzmin ’s source code was heavily copied
between scripts with minor modifications and contained numerous unused functions and misleading names
(like LSTM for the 1D UNet). Previous approaches were scattered within the scripts as commented lines
which gives some insight into failed approaches such as activation functions, dropout layers and max–pooling
aggregation.

The final score for p kuzmin jumped them to 2nd place from their 7th placement with the public score.
This implies that p kuzmin ’s approach more accurately handled the more difficult source encounters than
the other competitors in the second scoring group. This may be due to the independent level 2 components,
however pfr had a significantly higher score and didn’t take this approach. Since p kuzmin only used one
time binning for each run, their approach likely had difficulty generalizing for all detector speeds and source
standoffs.

The competitor made some notable recommendations for future work including: (1) refactoring the
code for more efficient data processing, (2) generating additional features from the Fourier transform of the
listmode timestamps, (3) using the full CWT matrix per spectrum as input to a 2D CNN, (4) adding early
stopping to the level 1 MLP training, and (5) searching for better aggregation windows than 1 second. The
author also notes that future work would include upgrading to TensorFlow 2 which, like refactoring, would
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be a time intensive effort to remove the deprecated functionality and upgrade to the new API since Keras is
now built into TensorFlow.

While this approach was one of the more difficult to analyze, it does offer some useful best practices:

1. Training neural networks with early stopping is superior to a fixed number of epochs and is essential
for cross–validation.

2. Stratified and shuffled cross–validation data selection should be used to randomize the training data
and assure each model is trained with a similar number of data from each class.

3. General neural network architectures can be applied to the radiation detection and localization domain.
This is evident from the usage of a 1D UNet which was designed for feature segmentation in biomedical
image analysis. In this case, the UNet is essentially tasked with segmenting the spectra (plus features)
in the waterfall which contains the source.

7.2.3 03-gardn999

The competitor gardn999 used random forest classifiers with very good results, a schematic of this approach
is shown in Figure 79. Input features to the random forests were generated primarily by histogramming
listmode data. The bin edges were defined using 60 energy bins spaced following

√
2E and half second time

windows. Adjacent time-bins were then smoothed by including 1/4 of the counts from the previous and
following bins. Additionally, two more features were appended to the histograms, the mean and maximum
energy in each time-bin.

Six random forests were trained, one for each source type. Each forest consisted of 100 trees which each
use 50% of the training data and 20% of the of features. Each tree was built by iterating over the training
feature vectors starting at the base node of the tree. The node used 10 feature vectors to select the feature
column and split value by iteration, after which two more nodes were created until the max number of
nodes (20% of the total number of training data) was reached or the nodes ran out of run data. Positive
time segments were labeled as those within 10 seconds of the time of closest approach and weighted with a
parabolic function. All other time segments were labeled as negatives. Theses labels, along with the input
features, were then used to train the random forests.

When making predictions, the random forests were used to analyze the data from a particular run. Once
processed, the outputs were aggregated for detection/identification and timing. The detection/identification
was performed by computing the maximum sum of any 7 adjacent time-bins for each source type. If the
largest of these values was above a specified threshold then the source-type corresponding to that random
forest was alarmed. If the threshold was not exceeded then no alarm was sounded. The time of closest
approach was identified by selecting the 80 adjacent time-bins with the largest probability raised to the 7th
power, and then computing a weighted average of the times, using probability raised to the 7th power as the
weighting.

7.2.4 04-rayvanve

The competitor rayvanve applied several different concepts in their algorithm including feature engineering,
different distance measures using the supplied templates, convolutional neural networks, and random forests
(Fig. 80). The data were pre-processed in several ways. The raw list–mode data was histogrammed with
small energy and time bins followed by a 2D Gaussian smoothing of this “image” (or waterfall) with different
energy and time kernel widths. A range of bin sizes were selected to cover broad range of source encounter
times. The smoothed result was then combined into larger time and energy bins for further processing.
The competitor generated 11 images (see Table 9 for details) to engineer features by computing distance
metrics (Hellinger, cosine, L2) for each 1D energy spectrum (image row) from the competition provided
source templates (except the 6th and mixed source which didn’t have a template). These time dependant
distances were then used to generate features by taking the max, min, mean, std, kurtosis, argmax, argmin,
and snr both before and after mean subtraction.

Additionally, the competitor generated 2D histograms using two different energy binning schemes and
constant time bins (see Table 10 for details). A sliding time-window was used to allow a fixed size 2D
histogram to be used as input to the CNN. The first convolutional kernel was either the full length of the
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Figure 79: Schematic of the third place algorithm submitted by gardn999 .

Table 9: Waterfall specifications for heuristic calculations in rayvanve ’s approach.

Competitor
assigned

ID

fine
energy

bin
(keV)

energy
bin

(keV)

num
energy

bins

energy
smoothing

width
(keV)

fine
time
bin
(s)

time
bin
(s)

time
smoothing

width
(s)

324484 0.50 1.0 3000 2.0 0.0875 0.0875 1.00
16799578 0.50 2.0 1500 2.0 0.0625 0.2500 1.25
19279309 0.50 2.0 1500 2.0 0.0875 0.3500 1.50
21602281 0.50 2.0 1500 2.0 0.0625 0.2500 0.75
22517282 0.75 3.0 1000 2.0 0.0875 0.3500 1.00
30072664 0.50 2.0 1500 2.5 0.1750 0.7000 3.00
31335721 0.50 2.0 1500 2.0 0.0625 0.2500 0.25
33815452 0.50 2.0 1500 2.0 0.0875 0.3500 0.50
40634754 0.50 1.0 3000 2.0 0.0875 0.0875 0.25
45383928 0.50 1.0 3000 2.0 0.0875 0.0875 0.15
45501474 0.50 1.0 3000 2.0 0.0875 0.0875 0.50

spectrum or 3 bins less, similar to that of the first place approach. The 2D CNNs had two convolutional
layers with 64 features followed by batch normalization after the first and max pooling after both. The
outputs were then flattened before 50% dropout followed by a dense layer with softmax activation and 7
outputs including background. Training was performed for up to 6 waterfalls per training run depending on
the run length and the network input size. Thirty networks were trained to classify a source in the waterfall
with the training labels for the correct class set to 0.2 for no source, 0.07 for a run with a source that wasn’t
in the waterfall and 1 for a source in the waterfall. These were then aggregated using the same feature
engineering functions as before (mean, max, min, etc...) with and without mean subtraction. Additionally,
nine networks were trained with additional steps after the convolutional layers. This included 50% drop out
before a dense layer with one output and sigmoid activation to predict the relative source position in the
water (0–1). As there were many hyperparameters in data pre-processing, time–smoothing and CNN setup,
rayvanve trained 30 different classification networks and used the outputs from all of these, in addition to
those generated in the previous section, for final classification.

The final classification was performed using a random forest. In training the random forests a feature
elimination step was used to remove features that were not useful. Using a random forest for timing was
attempted, but didn’t perform well. As a result, the minimum Hellinger distance value was used as the time
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Table 10: Waterfall specifications for 2D CNN’s in rayvanve ’s approach.

Competitor
assigned

ID
output epochs

fine
energy

bin ratio

energy
bin

scaling

num
energy

bins

energy
smoothing

width
(keV)

fine
time
bin
(s)

time
bin
(s)

num
time
bins

time
smoothing

width
(s)

49740429 classification 60 0.25 linear 250 1 0.0625 0.25 60 1.25
5378213 classification 60 0.25 linear 400 1 0.0625 0.25 60 0.50
43594497 classification 40 0.25 linear 600 1 0.0625 0.25 60 0.50
23892937 classification 60 0.25 sqr 250 1 0.0625 0.25 60 1.00
18254272 classification 30 0.25 linear 250 1 0.0625 0.25 60 1.00
12414208 classification 60 0.25 linear 250 1 0.0625 0.25 60 1.50
18926302 classification 60 0.25 linear 400 1 0.0375 0.15 60 0.50
46572391 classification 30 0.25 linear 350 1 0.0625 0.25 60 1.00
1683883 classification 60 0.25 linear 250 1 0.0625 0.25 60 2.00
5378213 classification 50 0.25 linear 400 1 0.0625 0.25 60 0.50
43594497 classification 18 0.25 linear 600 1 0.0625 0.25 60 0.50
12414208 classification 30 0.25 linear 250 1 0.0625 0.25 30 1.50
46572391 classification 50 0.25 linear 350 1 0.0625 0.25 60 1.00
18254272 classification 60 0.25 linear 250 1 0.0625 0.25 60 1.00
23892937 classification 20 0.25 sqr 250 1 0.0625 0.25 60 1.00
5378213 classification 30 0.25 linear 400 1 0.0625 0.25 60 0.50
13162457 classification 40 0.25 linear 300 1 0.0625 0.25 60 0.75
12414208 classification 40 0.25 linear 250 1 0.0625 0.25 60 1.50
5378213 classification 18 0.25 linear 400 1 0.0625 0.25 60 0.50
18254272 classification 50 0.25 linear 250 1 0.0625 0.25 60 1.00
30342994 classification 50 0.25 linear 200 1 0.0625 0.25 60 0.50
46572391 classification 24 0.25 linear 350 1 0.0625 0.25 60 1.00
49740429 classification 30 0.25 linear 250 1 0.0625 0.25 60 1.25
18254272 classification 12 0.25 linear 250 1 0.0625 0.25 90 1.00
46572391 classification 50 0.25 linear 350 1 0.0625 0.25 60 1.00
42996466 classification 50 0.25 linear 200 1 0.0625 0.25 60 0.75
43594497 classification 60 0.25 linear 600 1 0.0625 0.25 60 0.50
30342994 classification 24 0.25 linear 200 1 0.0625 0.25 60 0.50
49740429 classification 10 0.25 linear 250 1 0.0625 0.25 60 1.25
49740429 classification 20 0.25 linear 250 1 0.0625 0.25 60 1.25
12414208 localization 60 0.25 linear 250 1 0.0625 0.25 30 1.50
4521908 localization 40 0.25 linear 250 1 0.0250 0.10 30 0.25
4521908 localization 30 0.25 linear 250 1 0.0250 0.10 30 0.25
12414208 localization 30 0.25 linear 250 1 0.0625 0.25 30 1.50
4521908 localization 60 0.25 linear 250 1 0.0250 0.10 60 0.25
12414208 localization 40 0.25 linear 250 1 0.0625 0.25 30 1.50
4521908 localization 30 0.25 linear 250 1 0.0250 0.10 60 0.25
12414208 localization 40 0.25 linear 250 1 0.0625 0.25 30 1.50
41001735 localization 40 0.25 linear 250 1 0.0625 0.25 30 0.25
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Figure 80: Schematic of the fourth place algorithm from rayvanve .

estimation.
The competitor was not too happy with the overall approach, given the use of such a variety of methods.

They note that training the CNN’s with 40–60 epochs provided better results on the provisional data–set
but this may have resulted in over–fitting and been detrimental to the private score. RNNs were attempted,
however the results were not as good as 2D CNN’s. One big missing component of this approach was
cross-validation. As noted by the competitor, this was implemented out of laziness and likely cost the
competitor points in over–fitting. Additionally, the source code includes many hard coded hacks due to what
the competitors notes as “mistakes” which would hinder attempts to expand this approach with different
hyperparameter configurations.

7.2.5 06-cyril.v

The competitor cyril.v used three 1D convolutional neural networks each with a LSTM layer in their
algorithm. These networks were implemented in keras/TensorFlow and were used to detect the presence of a
source, identify the temporal region of a source encounter, and finally to detect the time of closest approach.
Similar to the previous competitor a moving time–window of 30 seconds was used to standardize input to
the networks. The input was generated by performing a 2D histogram with 0.5 second time-bins and 79
logarithmically spaced energy bins (0–4000 keV). Additional Gaussian noise with a standard deviation of
0.001 was added during training.

The first network was used to detect and identify sources. This network included a three sequences of
a 1D convolutional layer, relu activation, a dropout layer to avoid over–fitting and a max pooling layer to
reduce the feature size by a factor of 2. The 1D convolutional layers used 128 kernels with a width of 5 time
increments. This sequence was followed by a final LSTM layer which fed tanh activated features to 2 dense
layers. The first dense layer was a source detector with a single sigmoid activated prediction. This output
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was thresholded at 0.95 to determine the presence of a source. The second dense layer was a source classifier
with 7 softmax activated predictions for the null case and the 6 source types.

Training was performed using ten phases; the first with 100 epochs, the following 9 with 20 epochs. In
each phase 80% of the training data was randomly selected while the remaining 20% was used for validation.
After each phase, the model with the best validation was selected to avoid reducing model performance
with further training. This approach is similar to early stopping which may have been beneficial here. The
competitor also included a regularization layer during training which added Gaussian noise before the first
convolution layer to limit overfitting.

The second network was designed to highlight the best 30 second time–slice to be used for source timing.
This network has a single convolutional layer with 128 kernels followed by a LSTM layer and the same
softmax output format as the previous network. Similarly dropout and Gaussian noise were included. This
network was trained 2000 epochs and a 75/25 split was used for validation. Only source present data was
used in training this network.

The final network performed source timing. This network had a similar design to the first network but
included more kernels (256). Training was done again with a 75/25 split and 2000 epochs.

The networks were then used as follows. The networks were run on all sliding windows of the input
sequence. If the first network registered an output of 0.95 or larger then a detection occurred. The second
networks outputs were then used to identify the 30 consecutive windows having the largest sum of squared
source probabilities. The timing was then computed by taking the weighted (probability to the fourth)
average of the outputs of the final network on those 30 consecutive tine windows.

The approach is somewhat interesting in that different networks and training sets were used for the
different tasks, however it is unclear whether such an approach is truly merited. Given the performance of
the first place approach it seems that using three different networks may not be necessary. On the other
hand, the implementation of non–linear energy binning combined with a 1D convolutional network and
rolling time windows is quite promising for a fieldable network.

7.3 Introspection and perturbation of the top algorithm

7.3.1 Embedding Layer Kernels

The top scoring algorithm used pre–processed waterfall inputs of energy spectra over time. The 1D convo-
lution layers were evaluated with feature kernels across all energies and 3 time bins. The first layer is called
an “embedding” layer which converts the energy channels to feature values with 32 kernels. These kernels
were analyzed to determine if the networks learned spectral features for the background and sources.

The kernels each consist of a scalar bias (offset) and array of weights (across spectrum energies). An
example kernel is shown in Figure 82. The weights array heatmap shows prominent features around the
primary photo–peak energies for I131 an Co60. These are large branching ratio peaks which are relatively
isolated from other source or background features.

Next we analyzed all kernels in the ensemble (960 total) to look for common trends which each network
learned. The weight vectors for each kernel were grouped using nearest–neighbor k–means clustering [107].
Through iteration we found that 20 groups resulted in visually distinct clusters.

The clusters, shown in Figure 83, show peak– and trough–like features around gamma–ray photo–peaks
which confirm that the embedding layer learned spectral features without the provided source templates.
That being said, the more complex, multi–peak source terms from HEU and WGPu are less prominent
or missing altogether. This could be a result from the training process learning to associate the lack of
the prominent peak features from other sources as an indicator for the presence of source which are more
difficult to identify. Unfortunately the following 6 layers of abstract feature convolutions make it difficult to
determine the precise effect of each embedding kernel on the final result.

7.3.2 Saliency Mapping

Another introspection technique, typically used identify the most significant image pixels which lead to a
particular classification, provided insight into the regions of the waterfall which the network used to make a
classification [108]. This approach creates a normalized weight (or importance) per input element called a
saliency map which is a concept from computer vision capturing image pixel uniqueness or importance for
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Figure 81: Schematic of the fifth place algorithm from cyril.v .

compression or easier analysis. We calculated the map for a particular training input with fine time bins (160
elements) without augmentation. The forward calculation through the network provides the LogSoftMax
output with 1681 elements. Using the known source and time of closest approach, we selected the ground
truth element and ran this element in reverse through the network to calculate the gradient of each layer
with respect to this value (the ratio of the change in classification weight to the change of input value). This
resulted in a final array of gradients corresponding to input waterfall elements.

An example result from this analysis is shown in Figure 84 for a 60Co source pass near time bin 135. The
saliency map shows hot–spots around the 1173 and 1332 keV photo peaks which indicate that the network
learned to classify 60Co using these features, much in the same way an analyst would. Additionally, the
saliency reveals the time dependence of the classification result for the time of closest approach from which
the map was calculated. This means that the network classified the correct source at the time of closest
approach based on time windows before and after the encounter. Upon closer inspection the pre- and post-
time hotspots were of slightly higher intensity than the ground truth, meaning that the network used these
times equally or even more while classifying the source.
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Figure 82: The embedding kernel from the first (of 30) networks in the pfr ensemble. Using the bias offset
(left) and the weights (right), this kernel converts an energy spectrum to 32 abstract feature values. Some
source peak features (I131 and Co60) can be observed in the weights array.

7.3.3 Hyper–parameter modifications

The algorithm structure was also modified to investigate the impact of various design choices on the final
score. These parameters were defined by a flexible YAML specification which allowed algorithm modifications
without substantial code refactoring. This specification included:

1. ensemble size (number of cross–validation splits and repetitions),

2. number of convolution layers (network depth), and

3. number of convolution layer output features.

In addition to these default parameters, the following parameters/customization’s were added for further
exploration:

1. activation function selection between convolution layers,

2. energy bin structure, and

3. training target modification.

The training target was modified to reduce the number of time bins which were set to non–zero values based
on the ground–truth. This had the effect of training the network to determine a source ID at the time of
closet approach instead of a surrounding time window (the default).

With these modifications, many algorithms were retrained and scored while modifying one of these
parameters at a time. On a Nvidia GTX 1080-Ti the training time was between 14–18min per net such that
an ensemble of 30 networks took 7.5hours in total. This training time does not include the pre–processing
of the raw CSV listmode data into a binary file of 2keV binned listmode data with an auxiliary file of run
indices. This CPU–bound pre–processing took almost as long as the ensemble training but only needed to
be completed once for a base energy bin structure of 2keV. These results are summarized in Table 11.

The observations from this process were as follows. Changing the training target to a single time bin
slightly reduced the score. This meant that while the time was inferred from the time bin with the largest
response, the convolutional network picked up the rise and fall of features in the spectra which did not
correlate to a delta–like output. After changing the training target, the number of time bins and network
depth (number of convolution layers) were modified. Decreasing either of these parameters reduced the score
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Figure 83: Nearest–neighbor k–means clusters of all embedding kernels (30 networks each with 32 embedding
features) from pfr . The kernel clusters exhibit peak–like features around photo–peak energies of interest
as marked in blue for background and pink for sources of interest.
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Figure 84: The saliency map of training input 107307 (source 4, 60Co) for network 30 from pfr . The kernel
clusters exhibit peak–like features around photo–peak energies of interest as marked in blue for background
and pink for sources of interest.

129



Table 11: Results from augmentations to pfr ’s approach with hyper–parameter modifcations highlighted
in yellow. The Embed Dim is the number of features output from the first 1D convolution layer operating
on energy channels from 3 adjacent time windows. The Dim is the number of features in each sequential
convolution layer. The public and private scores are colorized from red (worst) to white (neutral/baseline)
to green (best).

Torch Energy Num Time Training Embed CV Public Private

Trial Version Bins Bins Target Depth Dim Dim Activation Rep Splits Score Score

1 1.0.1.post2 increasing 160,80,40 box car 6 32 40 ReLu 3 10 90.25 76.88

2 1.0.1.post2 increasing 160,80,40 single channel 6 32 40 ReLu 3 10 89.16 75.50

3 1.0.1.post2 increasing 160,80,40 box car 2 32 40 ReLu 3 10 89.05 73.86

4 1.0.1.post2 increasing 320,160,80,40 box car 6 32 40 ReLu 3 10 89.89 76.53

5 1.0.1.post2 increasing 80,40 box car 6 32 40 ReLu 3 10 89.56 75.74

6 1.0.1.post2 increasing 40 box car 6 32 40 ReLu 3 10 86.68 73.02

7 1.0.1.post2 increasing 160,80,40 box car 1 32 40 ReLu 3 10 82.09 65.88

8 1.0.1.post2 increasing 160,80,40 box car 3 32 40 ReLu 3 10 89.69 75.99

9 1.0.1.post2 increasing 160,80,40 box car 4 32 40 ReLu 3 10 90.00 76.43

10 1.0.1.post2 increasing 160,80,40 box car 5 32 40 ReLu 3 10 90.14 76.75

11 1.0.1.post2 increasing 160,80,40 box car 7 32 40 ReLu 3 10 90.28 77.00

12 1.0.1.post2 increasing 160,80,40 box car 8 32 40 ReLu 3 10 90.38 77.01

13 1.0.1.post2 increasing 160,80,40 box car 9 32 40 ReLu 3 10 90.40 77.01

14 1.0.1.post2 increasing 160,80,40 box car 6 32 6 ReLu 3 10 86.77 74.15

15 1.0.1.post2 increasing 160,80,40 box car 6 32 10 ReLu 3 10 89.27 75.83

16 1.0.1.post2 increasing 160,80,40 box car 6 32 20 ReLu 3 10 90.03 76.64

17 1.0.1.post2 increasing 160,80,40 box car 6 32 30 ReLu 3 10 90.20 76.69

18 1.0.1.post2 increasing 160,80,40 box car 6 32 50 ReLu 3 10 90.16 76.83

19 1.0.1.post2 increasing 160,80,40 box car 6 32 60 ReLu 3 10 90.39 76.84

20 1.0.1.post2 increasing 160,80,40 box car 6 32 40 ReLu 1 10 90.24 76.62

21 1.0.1.post2 increasing 160,80,40 box car 6 32 40 ReLu 2 10 90.23 76.93

22 1.0.1.post2 increasing 160,80,40 box car 6 32 40 ReLu 3 5 90.28 77.23

23 1.0.1.post2 increasing 160,80,40 box car 8 32 60 ReLu 2 5 90.26 76.84

24 1.0.1.post2 increasing 160,80,40 box car 8 32 60 ReLu 1 5 90.27 76.67

25 1.0.1.post2 increasing 160,80,40 box car 8 32 60 ReLu 3 4 90.15 77.08

26 1.0.1.post2 increasing 160,80,40 box car 8 60 60 ReLu 3 4 90.12 76.91

27 1.5.0+cu101 increasing 160,80,40 box car 6 32 40 ReLu 3 10 90.25 76.92

28 1.5.0+cu101 2keV 160,80,40 box car 6 32 40 ReLu 3 10 89.21 75.33

29 1.5.0+cu101 4keV 160,80,40 box car 6 32 40 ReLu 3 10 89.73 76.02

30 1.5.0+cu101 4keV to 3MeV 160,80,40 box car 6 32 40 ReLu 3 10 89.89 76.23

31 1.5.0+cu101 increasing 160,80,40 box car 6 32 40 Mish 3 10 90.33 77.26

32 1.5.0+cu101 increasing 160,80,40 box car 6 32 40 Mish 3 5 90.31 77.12
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with the largest impact arising from reducing the depth. Increasing the number of time bins to a finer scale
(320 bins) actually decreased the score. This was likely because the training only selects one integration to
set a training target using a heuristic derived from the speed–to–offset ratio. The heuristic did not account
for decreased counting statistics in the finer time bins so the training process may have been less effective
due to statistical noise. Increasing the network depth improved the score but saturated after 7 layers which
pfr likely tested before settling on 6 layers. Changing the number of features in the convolution layer
sequence always decreased the private score leading us to believe the number of features can easily cause
over–fitting to the “easy” cases. Unsurprisingly, changing the energy bin structure to a linear form decreases
performance since the number of energy bins per feature very with energy. Finally, decreasing the number of
cross validation splits (combinations of 90/10 training and validation sets) resulted in the largest increase in
private score for a single parameter modification. In this case (trial 22), the ensemble was half the size of the
winning algorithm and open up the possibility for reducing algorithm complexity (and inference time) while
maintaining performance. It is worth noting that reducing the repetitions of augmentations (re–sampling
and changing time direction) of the same cross–validation splits also increased the performance but not as
dramatically as changing the cross-validation data altogether as in trial 22.

After the single parameter search, the best scoring modifications were mixed to reduce the network size
with the goal of maintaining or improving the score. The best combination was trial 25 which improved the
score with a smaller ensemble of deeper networks. This ensemble took 10% longer to train but the increase
in inference time was negligible.

During this analysis the version of PyTorch (the neural network framework used by pfr ) was upgraded
in order to leverage other tools for introspection and visualization. The upgrade slightly improved the score
and was used for trial 27 and onward.

The final modification required some additions to the source code to implement a different activation
function which has been show to improve objection detection and segmentation tasks [109]. This function
(named Mish) is a non–monotonic function which differs from the ReLu function used by pfr in that it
allows negative values and introduces non–linearity to the output of each convolution layer. A collection of
activation functions is shown in Figure 85. Similar to the results in other domains, replacing all activation
convolution layer activation functions with Mish resulted in an improvement over the baseline score. In fact,
drop–in–place activation function update resulted in the largest private score improvement in this analysis
as seen in trial 31. Additionally, reducing the ensemble with half the cross–validation splits resulted in a
lower but still higher score than any other modification. The improvement comes with some cost since the
Mish function is more complicated than the ReLu function but was not determined to be a limiting factor
with 15% more training time and equivalent inference speed. Optimizations of the Mish activation function
for specific hardware are currently under development and are expected to soon be available in the stable
release of PyTorch.

7.4 Key findings and best practices

From the results of the TopCoder competition, it is clear that neural networks and random forests are capable
of performing detection and identification of radiological sources with high sensitivity. This was most clearly
shown by the clean and direct approaches from the 1st and 3rd place competitors. However, this point is
also conveyed in the success of efforts like that of the 2nd place competitor, where many algorithms and
approaches were combined to a high–scoring end. This leads us to an important point, which was known
and acknowledged from the beginning of this project, the competitors objective was to maximize their score.
Given the broader motivations and complexities of the radiological search problem that were not embedded
in the scoring routine, or even in the data for that matter, these algorithms are not silver bullets and were
never expected to be. Rather they are demonstrations that a challenging competition was held, and that
the challenge was met with different approaches that outperformed the conventional baseline and the .gov
competition winners.

Several of the best practices observed in the winning algorithms resonate with subject matter experts.
These include histogramming gamma–ray data to standardize data format, non–linear energy binning such
that bin width scales with detector resolution, analysis of multiple time–windows given the desire to optimize
SNR in variable encounter speeds/standoffs, and binomial down-sampling of the gamma–ray data to generate
additional data while maintaining statistical properties. Beyond these we note the data–driven learning
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Figure 85: Typical activation functions used in neural networks. Credit: https://github.com/

digantamisra98/Mish

employed by most competitors. By this we mean that the source templates, provided with the competition
data set, were not used, rather competitors labeled their training data and used this to teach algorithms how
best to identify the sources of interest. This approach has the advantage of teaching the algorithms how to
identify sources in complex scattering environments typical in urban scenes which are not captured in the
ideal simulated source templates. Additionally, the algorithms that analyze the time and energy information
simultaneously learn not just the variable spectral signals, but how theses signals evolve during the source
pass which cannot be gleaned from the source template alone. Such a practice puts the onus on diverse and
complex training data, which in the case of the competition was ample, but for larger source libraries may
create a burden.

Throughout the top algorithms we see common “machine learning best practices.” Many of these focus
on preventing over–fitting. These include using separate subsets of data for training, validating, and testing
algorithms, using dropout in neural networks during training, and adding different noise to algorithm inputs.
Other best practices focus on making training data go further. Examples of this are data augmentation via
time–reversal or binomial down-sampling which expands the available training data. Finally, the way in
which data is labeled for algorithm training is crucial. The labeling used should be consistent with how
the selected algorithm computes loss such that learning will progress well. Additionally the labeling should
follow simple models for signal strength (like inverse–square weighting) instead of binary labels since these
outputs are generally expected to scale with source proximity.

Many competitors also engineered features from the provided data to extend the algorithm input size.
These features were intended to provide additional information to the algorithms, especially in cases where
the algorithm analyzed time steps sequentially and could take advantage of full run metrics like gross counts
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and duration. Competitors derived other features from summary statistics (mean, min, max, skew, etc) of
distributions of listmode values, waterfall counts or intermediate algorithm results. While these features
increased the information each algorithm could operate on, it is worth noting that the top competitor did
not use this approach.

In terms of neural networks, there were two primary convolutional neural network designs seen in the
top 5. The first was a 1D convolution in time, where the kernels were the width of the energy axis. The
second was a 2D convolution over time and energy. While the 2D convolutions could sweep over time
and energy in the 2D histogram (waterfall) rayvanve notes that the best performance they observed came
from a convolution kernel which extended to nearly all energy bins – essentially a 1D convolution in time.
This approach was initially surprising as we typically analyze spectral features with energy windows when
detecting and identifying sources. After observing this approach in every CNN based algorithm, we realized
that this is a close analogy to audio and other spectrograph analysis [110].

In addition to CNN’s, some competitors implemented recurrent neural networks which use the previous
output as features for the next input. This approach makes the inputs dependant on the previous input which
can stabilize results for highly varying (low counting statistics or SNR) inputs. These approaches have some
drawbacks, such as the vanishing gradient problem during training, which are typically resolved through using
long short–term memory (LSTM) networks which improve the memory of previous inputs (especially during
training) [111]. LSTM’s are particularly suited for time sequence analyses such as analyzing a rolling window
of spectra which, in theory, should improve performance during source encounters. That being said, most
of these approaches were not optimized and competitors often noted that their future work would include
hyper–parameter optimization of the recurrent layers. While RNN’s can provide improved performance, this
comes at the cost of notoriously difficult hyper–parameter configuration which some competitors (like pfr )
didn’t attempt and relied instead on convolutions in time.

Another difference between neural network approaches included the pre–processing or standardization
of the input shape prior to analysis. Neural networks operate on fix sized input (i.e. constant number of
time and energy bins) which posed a challenge since the each run varied in length based on the speed of
the encounter. In some cases this was a fixed rolling time–window, while the winner chose different levels
of discretizations for the whole run. The fixed number of time bins over various run extent likely gave pfr

an advantage since the many integration times resulted in additional count rate variation to improve scale
invariance. One can envision translating such an approach to different fixed integration times and employing
a smaller total length window for a real-time analysis, while maintaining the same receptive field of final
neurons. Such an approach would maintaining sensitivity at different speeds while still providing a fixed size
input.

In terms of decision trees, we observed two approaches. The first, Random Forests [103], is the simpler
approach consisting of a ensemble (forest) of binary decision trees which, while training, drop features in
the decision nodes to avoid over–fitting. The training the forest of trees has a similar effect to K-fold cross
validation since the trees are trained independently on a subset of the training data. The objective of case of
source detection is a classification task which is achieved by majority–rules voting by all trees after execution.
While regular decision trees offer great interpretability, the stochastic nature of random forests leads to a
more complex solution (akin to neural networks).

The second type of decision tree used by 1 competitor (and attempted by 2 others) are a relatively
new approach called light–gradient boosted machines (LGBM) [104]. Gradient boosting machines (GBM)
[112] combine shallow decision trees in sequence as opposed to in parallel such that each tree can improve
the results from the previous tree. While GBM’s offer improved anomaly detection over Random Forests,
they are computationally expensive to train/execute and thus do not scale to large data sets. Light GBM’s
were created to address these issues through multiple approaches to reduce and bundle features such that
computations are only performed on features which greatly impact the output. In the past few years LGBM’s
have become quite popular since they offer similar accuracy to GBM’s at 20x the speed.

While LGBM’s are a popular tool in the data science community, it is worth noting that they are harder
to tune than RF’s which, if done incorrectly, can lead to over–fitting on input with high noise. There is some
evidence of this assessment in the competition results since the second place competitor used only RF’s.
This algorithm used RF’s exclusively and thus the competitor likely focused on parameter tuning. Lower
scoring competitors used LGBM’s as part of a larger ensemble with NN’s which they mentioned could be
further tuned to boost performance but instead they used neural networks.
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The top competitors implemented a variety of the neural network and/or decision tree approaches dis-
cussed above in some form of an ensemble. These collections of independent or sequential algorithms were
trained on different subsets of data (cross–validation) to reduce bias towards the training data and improve
accuracy for new and diverse testing data. The ensembles do take longer to train than single networks, which
must be balanced with the overall robustness resulting from minimizing overfitting.

All algorithms ended with the application of a threshold to determine which of the source classes (if any)
were most likely present and, if so, at which time increment was this probability the largest. In a classical
algorithm, this threshold would be set by choosing a probability of detection (PD) for each source and a
false alarm rate (FAR) from background noise. As the objective of the competition was maximization of
the score each competitor chose thresholds based on trial and error instead of a dedicated analysis. In some
cases this process was leaderboard probing while in other’s they used the cross–validation results to inform
the values. Many competitors noted that a more detailed analysis of a threshold could be calculated but
instead focused on hyper–parameter optimization to improve the algorithm as a whole.

7.5 Comments about utility as deployed algorithms

In the TopCoder competition the participants had a single goal, to optimize their score. As a result,
the winning algorithms have been tailored towards the competition data format and scoring methodology.
Algorithms that are deployed in the field should meet several criteria, of which several are in tension with
the competition format as shown in Table 12.

Table 12: A comparison of fieldable algorithm requirements vs the competitor goals.

A fieldable algorithm should: The competition encouraged:

Perform detection of the presence of anomalies quickly Use as much data provided as possible
Perform source classification of 20-70 source types Only 5+1 source types
Have the ability to disable specific source types Focus on 5+1 source types
A configurable false alarm rate Optimize sensitivity for scoring algorithm
Be robust to quick variations in background (rainfall, tunnels, bridges) Learn provided background variability
Faster than real time analysis on available hardware Optimize for score, no concern for run-time
Be trainable / operable for different detector types and sizes Optimize for competition data

Despite this, several of the concepts employed in these winning approaches could be adapted to better
align with the needs of fieldable systems. Below we briefly address each one of these points and how one
might conceptually adapt some of these algorithms to the fieldable criteria.

Perform detection of the presence of anomalies quickly. The competition provided all of the data
for a particular segment at once, and many competitors used all or large chunks of this data as inputs to
their algorithms. However, these same algorithms could be adapted to take narrower time–segments of data
as inputs and to operate on a rolling basis. As an example, while pfr performed time–chunking of the whole
run into 40, 80, 160 segments, the algorithm could be adapted to analyze 16 seconds of data with 11, 22, and
44 segments (with integration times of 2, 1 and 0.5 seconds respectively) and operated on a rolling basis.
Such an adaptation would maintain the receptive field of the pfr network (11 time-steps of the coarsest
discretization) while including sufficient data to describe the local environment for a vehicle-borne system
in an urban environment.

Perform source classification of 20–70 source types. The competition was limited by TopCoder
in the size of data set that could be provided, thus the source catalog was limited in size to ensure sufficient
complexity could be provided. Given the data–driven approaches of the competitors, additional training data
would be needed for each source type. This is achievable, though robust synthetic data generation tools would
be needed for extension to different detector sizes and types. With additional training data, one can easily
imagine extending the source classification dimension of the final layer of the neural network approaches for
classification of more source types. However, a common challenge in deployed algorithms is the presence
of cross–talk, or alarming on incorrect but similar source classes in the field (e.g. 99Tc triggering an HEU
alarm). Inclusion of sparsity regularization on these final layers of a neural network and post–processing with
a decision tree could help to limit cross–talk. An additional consideration is whether a network would need
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to be re–trained completely when adding sources to the catalog. By separating spectral feature estimation
from temporal inference one might be able to preserve the performance of the pfr approach while enabling
simple and lightweight extension (or reduction) of the source library.

Have the ability to disable specific source types. The final layers of the classification tools, neural
networks or otherwise, could be modified post–training to remove classes prior to calculation of a SoftMax.

A configurable false alarm rate. Many of the competitors hard coded threshold values for their
algorithms. These thresholds could be replaced with configurable variables that are trained with sufficient
background data to yield a configurable false alarm rate.

Be robust to fast variations in background The TopCoder data set use a single street geometry
for synthesis of the data and did not include cosmic rays, radon fluctuations, or features like bridges and
tunnels that can cause rapid background transients in search systems. Additional training data could be
provided to the algorithms for a data-driven mitigation strategy. Alternatively, secondary algorithms could
be implemented that evaluate alarming radiological data for consistency with known background features
and neglect time-dependence that often drives the false alarms of concern.

Faster than real time analysis on available hardware. While many of the top algorithms were
quite complex, their run-times were still faster than real time. Several are implemented to require GPUs for
training, however these algorithms are small enough that we expect they could run in realtime on a CPU.

Be trainable / operable for different detector types and sizes. Again, as these approaches
are data-driven if sufficient training data is available then the algorithms may be trained, however the
performance and hyper-parameter optimization may not be robust across detector regimes. The statistical
properties of radiological backgrounds shift in smaller detectors, additionally much better resolution systems
create additional spectroscopic features to be accounted for. One concept for partial robustness to detector
performance would be to train algorithms on a per detector basis for estimated spectral deconvolution,
yielding an estimated incident gamma-ray flux, then passing that flux (which is consistent across detector
types) into an anomaly detection and identification algorithm. If uncertainty estimation could be produced
in deconvolution then the training of the anomaly detection and identification algorithm could be trained
across uncertainty regimes (relevant to different size/resolution systems).

7.6 A “Fieldable” Concept Based on Lessons Learned

Based on the clear performance gap seen between pfr and the other competitors in results of the TopCoder
competition and our analysis, we consider an augmentation of the winner’s approach as the route toward a
“fieldable” algorithm that offers the highest possible performance. The design of the pfr network employed
three integration times, determined by the run-length, and a single convolutional sub-network applied across
the entire run. A modification of this approach would fix these integration times (e.g. 0.5, 1, 2 sec), as well
as the duration of data used per analysis, e.g. 22 seconds – the minimum duration to use the full receptive
field of the 6 layer convolutional network. Training of this modified approach would require little alteration
to the existing algorithm, however incorporation of best practices such as random cross-validation and early
stopping would reduce the risk of over-fitting. Other best practices like the data augmentation schemes used
(binomial downsampling and time-reversal) would be continued. The feature depth of the network would
need to be significantly increased to support a larger source library.

With these concepts the algorithm would begin to fit our initial list of requirements, however modification
of the source library would mandate re-training of the entire network. To circumvent this requirement, the
sub-network could be split (for at least a subset of the convolutional layers) to separate spectral and temporal
feature learning. With such a modification the spectral sub-network could be trained for new source-types
and appended to an existing network thus avoiding re-training. The performance of such a concept is
something that could be benchmarked on the existing TopCoder data set. Finally, introspection and alarm
information could be provided to users via saliency mapping as discussed in the previous section.

An alternative, or perhaps complimentary, route toward a fieldable algorithm would be pursuit of the third
place (gardn999 ) methodology employing random forest classifiers or boosted trees like LGBM. Though
there was a clear performance gap between gardn999 and pfr , implementation of a random forest per source
is extensible, fast, and offers a reasonable degree of introspection. With a growing library of sources the
problem of cross–talk is likely to become an important issue that would need to be addressed. One approach
to alleviate this cross–talk could be using a secondary layer of forests to “vote” on the results from the first
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layer. This would maintain the extensibility of the first layer to additional source classes while retraining
the second layer to maintain detection accuracy.

Using both neural network and decision tree approaches could provide the most performant algorithm,
but would require the most effort to design and tune. Multiple competitors used such hybrid approaches,
however most of these designs were informed by random trial and error as opposed to dedicated tuning.
Knowing that these complex approaches did not outperform the relatively simple CNN from pfr and the
decision tree only approach from gardn999 , a simple hybrid approach could be quite effective. Starting
with a CNN like that of pfr and analyzing the time series source class output with a random forest could
provide a compelling base for fieldable algorithm.

Another option could be to create an ensemble that is a combination of multiple methods that is performed
via a meta-analysis. This could potentially leverage the best of each of several different approaches and lead
to overall improved performance. An initial survey of a collection of popular ensemble approaches was
performed on the top three algorithms. The algorithms were run on both the training and testing datasets
and the outputs were recorded in CSV file format as specified by the data competition rules. Five different
ensemble techniques were investigated for combining the outputs of these three algorithms: multilayer densely
connected neural networks, support vector machines with linear and nonlinear kernels, k-nearest-neighbors,
traditional decision trees, random forests, and extremely randomized trees (extra-trees). For the latter 5
methods, two separate models were trained on the training data, one for classification of the source type
and the other for predicting the source location (regression). These five models were trained directly on the
predicted source and source locations predicted by the 3 algorithms on the training data. For the neural
network, the classification decisions from the 3 algorithms were each one-hot encoded into a binary array of
length 7, with each value representing a single source. These three one-hot encodings were then concatenated
into a single binary array of length 21, which was used as the input to the network. The output of the network
is a single dense layer with 7 units, each representing a single source type, that uses the sigmoid activation
function. Networks with one and two hidden layers of various sizes (between 5 and 100 units each) were tested
with several different activation functions, with relu yielding the best results. Dropout layers with dropout
rates of 10% were included after each hidden layer to minimize overfitting. The networks were trained using
RMSProp with the categorical crossentropy loss function. The best-performing algorithm on the training
set was then selected as the final model to be evaluated on the testing set. After training and optimizing
the 6 different ensemble models, they were run on the output CSVs of the algorithms on the testing set and
new solution CSV files were generated. These solutions were then scored using the same scoring algorithm
from the competition. These results are tabulated below in Table 13. Of these 6 models tested, the best
performance was obtained by the multilayer densely connected neural network, which outperformed both
the second and third place algorithms, but did not reach the performance of the first place algorithm.

Table 13: Final scores for the ensemble algorithms compared to individual performance of the top three
competitors.

Algorithm Testset Score

pfr 76.43
kuzmin 73.67
gardnn 73.43

Multilayer Dense Neural Net 74.29
Random Forest 73.45

K-Nearest-Neighbors 73.44
Extremely Randomized Trees 73.38

Decision Trees 72.91
Support Vector Machines 71.20

These results indicate that a simple, naive ensemble method is inadequate for producing a superior
algorithm in this particular case. There are three likely reasons behind this. The first is that, in order for
an ensemble method to yield better performance, each algorithm must have cases in which they perform
better than the other algorithms, that is, each algorithm must have a unique set of strengths and weaknesses
such that one algorithm’s weaknesses are balanced out by another algorithm’s strengths. In this particular
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case however, the pfr algorithm substantially outperforms the second and third place algorithms in the
majority of cases, as is demonstrated in Chapter 6. The second potential contributor to the lower ensemble
performance is the fact that the ensemble methods did increase performance on the training set, but this
increase in performance did not extend to the testing set, indicating that the ensemble approach did not
yield a fully generalizable algorithm. As discussed in Section 6.1.2, there were considerable differences in the
location sampling between the training and testing datasets, which may make it more difficult to create an
ensemble that generalizes well based on the limited amount of information in the output solution CSVs used
to train the ensemble. In addition, the structure of the training and test sets was such that they emphasized
different regions of the input space through the use of Non-Uniform Space Filling designs (see Section 6.2),
which provides another test of generalizability.

This leads to the third potential contributor, which is the fact that there is a considerable amount of
information loss when moving from the actual algorithm outputs (probability distributions per source class)
to final output decisions (integer class). By using the class probability distributions from each of the top
three algorithms, better performance is likely to have been achieved from the ensemble.

Overall, the reduction in final score when using the ensemble primarily arose as a result of the ensembles
having a lower classification accuracy, with the best ensemble having a classification accuracy 0.71% lower
than that of pfr and a source location bonus of 0.58% higher than that of pfr . Despite the increase in
source location accuracy, the final score was still lower by 2.14 points.

The fact that a simple, naive ensemble approach did not produce a better algorithm indicates that more
complex and sophisticated approaches to combining these algorithms needs to be investigated. A more
complex ensemble approach such as boosting, which requires retraining of the models, could potentially
yield a better ensemble by focusing the training process on each algorithm towards their respective strengths
and weaknesses. At a higher level, creating an entirely new, single algorithm that combines the most
attractive features of each of the highest-performing algorithms could potentially produce a more advanced
and generalizable algorithm.
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8 Discussion and Conclusions

8.1 Conclusions

The NA-22 funded a Data Science project (FY2018 – FY2020), that sought to demonstrate the capability
to host data competitions to leverage expertise from the broader data science and urban radiation search
communities through crowd sourcing, was successful on many fronts.

First, the team gained valuable experience by hosting a government-centric competition at https:

//datacompetitions.lbl.gov/competition/1/. It was possible to learn about the key elements of hosting
a competition and the many decisions and elements that need to be considered to provide the right data
with the right leaderboard scoring metrics. The second competition, hosted by TopCoder for an interna-
tional community of competitors, allowed broader participation and innovative algorithms from outside of
the established radiation search community to be presented. The wide participation between the two compe-
titions provided the ability to see many alternative approaches and make direct comparisons between them.
Navigating the logistical challenges of hosting the competition was non-trivial, but by successfully hosting
the two competitions, there is now a documented path for how future competitions might be hosted. It
was important to demonstrate the capability of the DOE complex to generate and execute a successful data
competition.

New statistical methodology was developed for efficiently creating large data sets with desirable inten-
tional characteristics for each of the training, public test and private test data sets. The structure of the data
allowed analysis to extract detailed comparisons between solutions for different characteristics of the detect,
identify and locate portions of the competition for each of the 6 specified sources. The data generation using
the ORNL/MUSE tools was effective and may find future uses in other related applications. Additional
methodology was developed for the analysis to allow for in-depth comparisons between the competitors
results at the global scoring level, as well as for individual components of the competition objectives.

An added benefit of the competition has been that the data set has been more broadly disseminated after
the competition and is being used by many students and researchers as a way of testing new approaches,
comparing their methods to established baselines, and leveraging what was learned from the competition
results.

The top approaches outperformed the winning algorithms from the initial competition (.gov) that was
internal to the national laboratories. In exchange for prize money, the 10 performers from the TopCoder
competition turned over their analysis code with a technical description of their algorithmic approach.
Through exploration and modification of this code the team found several new insights about strategies
for successful urban radiation search. Artificial neural networks and tree-based algorithms were dominant
among the top teams. In addition to employing these algorithms, the top competitors followed many of
the best-practices common in the data science community; separating training-validation-testing data, data
augmentation, dropout and other strategies to avoid overfitting, and ensembling. Furthermore, the top
competitor provided clearly documented code with simple high-level configuration (again following machine
learning best practices) that enable straight-forward modification of their algorithm for further evaluation.

After exploring the winner’s code, and considering the simplifications that were necessary to host a
successful competition, it is clear that several of the approaches found within the algorithms may be effective
if developed further. The most simple and elegant approaches were also the highest performing, and there are
several clear paths toward modifying these algorithms to better suit the true urban search problem. Through
experimenting with the competitors’ code, it was possible to understand and further optimize some of the
approaches, as well as begin the process of adapting them to more operational settings. The combination of
using subject matter expertise to inform machine learning techniques shows promise for further improving
solutions and refining the existing capabilities.

This data competition project also demonstrated the ability to generate a well-constructed representative
data set that can be used for the development of novel methods for radiation detection and identification.
This is highlighted by the recent development of two deep learning-based algorithms for radiation detection
and identification. One of these is recent state-of-the-art work [72], where the dataset developed for the
competition was used to pre-train a 2D CNN on gamma-ray waterfalls. The network was then retrained on
data from a real detector system with labeled anomalies and proved to perform well in such an environment.
The data competition dataset was also used to design, develop, and test the autoencoder radiation anomaly
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detection (ARAD) algorithm, funded through the Department of Homeland Security, which has been tested
and proven for use in a real-world detection scenario [60, 69, 70]. These accomplishments demonstrate that
a dataset with desirable characteristics is a value tool that is already having an impact in the real world. It
enables new types of algorithms that can work with real detector data, and it highlights the role that large,
high quality synthetic datasets can play in training these new kinds of algorithms.

We conclude this project optimistic about the promise of machine learning tools applied to the urban
search problem and, more generally, about the ability for broad community-scale efforts to advance capabil-
ities within the DOE Complex.

8.2 Lessons Learned

While overall the competitions were highly successful for their expressed goals, there are a number of im-
portant lessons that were learned that should guide any future data competition endeavors.

8.2.1 The Opportunity

As noted in the introduction, there was initially skepticism from some in the radiation detection community
that data science based approaches were relevant and could be competitive for solving this problem. The
competitions were able to demonstrate that just by extracting features from just the data could be suffi-
cient for detecting, identifying and locating sources from an urban environment. The direct comparison of
performance from the different solutions allowed us to gain some understanding about the strengths and
weaknesses of these approaches.

In addition, some of the top solutions used a combination of domain knowledge to set up the data process-
ing and then data science based methods for the analysis. This was a powerful combination with potential
to outperform alternative approaches. Without the competition to encourage data science involvement and
to provide a formal comparison mechanism, it would have been much more challenging to demonstrate the
relevance and potential of data science methods in this problem space.

The existence of the dataset has been noted by the urban radiation search community, and it has become
a valuable tool for early assessment and development of innovative algorithms. Not only is it valuable to
the development community, but results from early testing provides direct comparison of new methods to
existing approaches to help gauge their potential.

8.2.2 Data Construction

The choices of which data to present to the competitors and how to score the results are two of the most
important decisions when fielding the competition. Overall, we think that the two competitions reflect our
detailed commitment to making these choices with input and guidance from subject matter experts.

1. The size of the data set is bounded above by how much data competitors can easily handle. It is
bounded below by considerations of adequately exploring the input space of interest and the power to
assess differences between algorithms. The upper bound is likely to change steadily over time as users
are increasingly able to handle larger data sets. The lower bound of how much data is needed for each
case (here each source), should be thoughtfully considered using statistical power analysis to anticipate
the ability to find statistically significant differences between competitor algorithms for different terms
in the model.

2. Care should be taken to identify different input factors that will be explored in the data set, and the
ranges of each factor should be evaluated based on what is likely in real world scenarios and to include
both regions where success and failure are likely. It is also helpful to include some “very challenging”
cases to encourage algorithm growth and to ensure a demanding test for the competitors.

3. The structure of our data sets were to make the training set contain a larger number of easier cases,
then progressively increase the emphasis on difficult regions of the input space for the public and
private test sets. This encouraged the competitors to demonstrate the ability of their algorithms to
more challenging extrapolation cases. Algorithms that can do this well, are more likely to perform well
in new scenarios not directly tested by the data competition.
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4. One consequence of the differentiated data sets for the training and test sets was that there were a
smaller number of runs for what were considered easier scenarios. This resulted in some instability and
unintuitive logistic model predictions based on the larger variances associated with some of the easier
regions of the input space. In future, it would be desirable to increase the proportion of runs in these
easier regions for the test set data to add some stability to the model predictions.

5. Another aspect of the data set construction that would have been beneficial to manage more actively
was the balance of runs for the different source locations. There were some considerable imbalance
between locations across the different training and test sets, that had some less desirable consequences.
In future, it would likely be beneficial to look to manage the choice of runs to maintain some rough
balance between levels of the inputs to ensure that no undesirable artifacts are introduced.

6. Thorough testing and checking of the data set is critical to eliminate any unintended artifacts in the
data. This is a choice that is very difficult to correct once the competition has started.

8.2.3 Leaderboard Scoring

Between the two competitions, changes were made to the scoring formula to reflect what was learned from
the first competition. The specification of the leaderboard scoring is a critical decision that has substantial
impacts on the results of the competition and how much different objectives are prioritized.

1. In preparation to field the two competitions, there was extensive alpha and beta testing of the submis-
sion process and the scoring choices. This lead to some modifications before the competition that were
critical to the success of the results. Since it is difficult (or impossible) to change the scoring algorithm
once the competition is started, this pre-testing is critical to increase the probability of useful results.

2. Competition’s scoring resulted in participants marginalizing over a relevant variable, the false alarm
rate. This was a known compromise with this competition but it is important to remember that opti-
mizing the scoring function is the only criteria of interest to them. This feature of a fixed leaderboard
scoreboard was necessary, but is in sharp contrast to the approaches common in the urban radiation
search community where the false alarm rate is generally a tune-able parameter.

3. In the government-centric competition, feedback was provided to the competitors about their perfor-
mance on the different objectives (by source, and by detect, identify and locate). If the goal of the
competition is to drive improvement, then providing this feedback part way through the competition
can be beneficial.

4. Several of the competitors ended up with scores that were quite close to each other in the final rankings.
To better understand whether these scores should be thought of as effectively equivalent, or with
genuine differences, new statistical methodology was developed. This helped to provide insights about
how close the performance was across other similar data sets and also allowed for experimentation with
different scoring mechanisms and different proportions of data from the various sources.

5. Performance of the competitors was closely tied to the number of choices that they had for each run.
Some of these constraints were dictated by our ability to generate data and the overall size of data
that could be effectively provided to the competitors. The structure of the competitions dictated that
there was at most one source per run, and there were only 6 possible sources from which to choose.
These place considerable restrictions on how to interpret results and what we are able to predict about
the performance of the algorithms in less restrictive scenarios.

8.2.4 Specification of Requirements for Submission

One of the primary motivations of this competition was to gain insights on the urban search gamma–ray
detection problem when modern machine learning approaches are applied by competitors without extensive
domain–specific knowledge. In order to learn the most from these submissions the competitors were required
to submit a functional Dockerfile with test/train scripts with the hope that this functional development
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environment would provide insight on the approach and extensibility. The competitors were also asked to
submit a report summarizing their approach and implementation.

However no other requirements where placed on the requirements for prizes so the quality of the sub-
mitted reports and code varied highly between competitors. A few competitors submitted extensive reports
with detailed commentary on the various data preparation steps and algorithm components with support-
ing diagrams, while for many others what was submitted was less structured unpolished scripts with few
comments and lots of unused code.

1. Provide a pre-formatted report to participants to guide the structure of their summary to ensure that
they are consistent and hit all important relevant points.

2. Require algorithm configuration files for analyses so that perturbation studies are possible (This would
also be better practice for participants!). There are lots of open source tools to enable this (MLFlow,
hydra etc...).

8.3 Future R&D Recommendations

Because of the overwhelming positive response to the data set being available for students and researchers,
it would be beneficial to develop other data sets that expand on this work, broaden the scope over which
data are available, and allow testing and comparison of algorithms on new sets of conditions.

Based on what we learned from hosting the two competitions, a number of improvements and enhance-
ments have been suggested. In addition to the ideas obtained from the competitors’ feedback from the first
government competition, the team has proposed a number of ideas to increase the realism of future data sets.
Here are a number of the priorities that would be desirable to explore as we proceed with future development:

1. Expanding the number of sources and shielding conditions would provide greater challenges for the
algorithms and increase realism.

2. Explore anomaly detection and identification with additional information. For example, there might
be opportunities to include scene data, historical or geo-spatial information.

3. It would be helpful to relax the structure of the data to move away from a run with limited options
(just zero or one source per run). This would allow data to be in more operationally-relevant larger
blocks of time with more flexibility to have 0, 1, 2, or more sources per block of time. Scoring would
need to be adapted to reflect these broader sets of scenarios, where false positives and false negatives
would occur in multiple times in the data block.

4. With reduced pressure to control the overall size of the data set, it would be possible to generate
larger data sets with more sources, the addition of clutter (cars, people on detector path) and inclusion
of radon (rain) and cosmic backgrounds. This greater diversity of conditions would provide a more
realistic test on which the algorithms could be evaluated.

5. Develop a website with curated data sets and expanded performance metrics to allow anyone interested
to quickly evaluate feasibility of their approach. While previously with a data competition, there needed
to be a single summary score for each algorithm, we plan to expand the summaries for each submission
to allow for more detailed information to be communicated about the strengths and weaknesses of the
algorithm. For example, in addition to an overall score, we would provide at least 19 summaries for
each submission (6 sources x detect, identify, locate + false positive rate).

6. To encourage collaboration and sequential improvement of algorithms, it would be beneficial to include
open-source implementations of published algorithms for researchers to used and as benchmarking.

7. Ideally, it would be helpful to present data in a more real-time format that allows for sequential pro-
cessing of the data. Instead of the results being reported after the run is completed, algorithms would
be encouraged to report a source as soon after the detector has passed it. In the competition format,
where the data are all available at the start of the competition, this was not a realistic implementation
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that could be achieved as competitors would have all of the data available for each submission. How-
ever, with additional flexibility in presentation of data, this might be achievable and would encourage
more realistic operationally-desirable implementations.

8. It would be interesting to consider generative data sets to prevent the size of the data presented to the
competitors from getting too large. This could also allow for incorporating different detector response
functions to really make a robust tool usable for many years to come.

9. Facilitate the development of introspection tooling along with algorithms. Such co-development and
implementation will enable not just performance evaluation via metrics but also some degree of inter-
pretation to accompany classification results. For example, it would be helpful to have each algorithm
report their estimated confidence in classification, and then as part of the evaluation of the algorithms
compare it with true uncertainty. By encouraging algorithms to report not only their findings, but also
to provide some quantification, this would make the results more actionable in operational settings.
This would allow for evaluation of the ”calibration” of algorithms. This suggests additional metrics to
compliment FAR & MDA.

10. In addition to considering improvements to the structure and nature of the data set, it is also beneficial
to look to leverage what was learned from the competitors’ algorithms. This could allow for new and
improved neural network detection / identification algorithms to be developed that are structured to
enable general versus architecture designed for robustness and generality.

11. Enhancing the ensemble algorithm approach to leverage the best features of multiple approaches could
lead to overall improved performance.
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Detecting Radiological Threats in Urban Areas
Algorithm description

pfr

Introduction

This algorithm is centered around a temporal convolutional neural network operating on binned data.
This network contains multiple identical subnetworks running on different temporal scales. Multiple
techniques encourage generalization of the model, including data augmentation by event subsampling
and weight sharing across temporal scales.

The neural network itself does not require prior knowledge of the energy spectrum of each source,
and is able to handle shielded sources or mixed sources without any special handling.

1
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1 Preprocessing

1.1 Energy binning

Energy binning was performed according to a manually constructed scheme. The goal was to minimize
the number of bins in order to reduce unnecessary degrees of freedom for the learning algorithm, while
maintaining separation of energy peaks from both natural and non-natural sources.

It was apparent that the simulation was performed at discrete 2 keV energy steps, so a first step bins
the simulation results according to this grid, rounding any ambiguous values (namely, odd integer
energies such as 13.0 keV) alternatively up or down.

Next a number of thresholds were selected so that energy levels above each successive threshold have
the binning step doubled, that is, their energy resolution halved:
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Figure 1: Energy binning scheme

The resulting scheme is approximately logarithmic, with 186 bins defining a slope on the order of
100 bins per decade of energy. The slope decreases rapidly beyond 1.8 MeV due to decreased signal
level in that range. The last bin covers all energy levels above 2.811 MeV. This was entirely selected
a priori based on the shapes of the spectrum of natural and non-natural sources after broadening by
the NaI(Tl) detector, and was not refined based on neural network performance.

It is likely that a simpler exactly logarithmic scheme would perform well.

1.2 Temporal binning

The algorithm operates at three distinct scales, binning the temporal span of the entire run into 160,
80, or 40 steps. This length was chosen so that the characteristic duration of the threat signal would
be on the order of 4 steps in at least one of these scales.

Normalizing the scale with respect to the entire run length has the benefit of reducing the range of
temporal scales that need to be examined. In a real-world scenario with no definite run length, the
equivalent would be to normalize with respect to vehicle speed, effectively turning temporal steps
into spatial steps, but this wasn’t an option in this contest as vehicle speed was not provided.

2
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This scale normalization results in large variations in average signal level, as for example short run
times or high vehicle speeds result in decreased photon count per cell.

1.3 Data augmentation

Once energy and temporal binning schemes are defined, for each run we simply count the number
nij of events present for each time step i and energy bin j. This array will be the input to the neural
network.

In order to enforce robustness to the Poisson statistics of nij , training data is augmented by randomly
subsetting the event data from a given run with a probability p drawn from the set {25%, 60%, 100%}.
Equivalently, the true cell count nij is replaced with a random cell count n′ij drawn from the binomial
distribution B(nij , p). The implementation uses the former method internally, as accurate binomial
sampling is costly and the event count is low.

This augmentation is also key in preventing overfit by acting as a strong regularization: it can be
viewed as a form of input dropout. Finally, it contributes to making the algorithm robust to changes
in signal strength, which is important due to the temporal binning scheme we employ.

Other augmentation schemes such as temporal scaling and reversal could also yield some limited
improvements, but were not implemented here.

2 Neural network model

2.1 Label format

For each training example, a ground truth is generated:

1. If no source is present, the “no source” target is set to 1, and all other targets to 0.

2. If a source is present, one of the three scales is selected depending on the approximate duration
of the signal. Then the k target cells surrounding the closest-approach time for the given scale
and the given source type are set to 1/k, and all other targets to 0. Note that k = 4 is a
constant and does not depend on exact signal duration: this is important in order for the
estimated probabilities to be meaningful.

As there are 6 source types, this results in a flattened label dimension of:

D = 1681

= 1 (no source)

+ 40× 6 (coarsest scale)

+ 80× 6 (medium scale)

+ 160× 6 (finest scale)

All ground truth label formats sum to 1, which allows viewing the problem as a soft-labeled classifi-
cation problem on D categories.

Note that due to selection of the scale based on approximate duration, generating the ground truth la-
bel requires not just the source time but also the offset-to-speed ratio as derived from answerKey.csv,
which can be understood as the temporal radius t0 of the signal in the ideal inverse-squared-distance

3
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signal decay formula A(t) = A0
1+(t/t0)2

. The FWHM duration of this ideal signal is 2t0. If on the other

hand t0 wasn’t directly available, various methods could be employed to either provide surrogates for
this quantity or reduce the amount of supervision provided to the algorithm. It is entirely possible
that with careful design such methods might outperform the current algorithm, at the cost however
of greater complexity and perhaps increased training time.

2.2 Multi-scale network architecture

The input is downsampled by summation of event counts to each of the three temporal scales.
Identical single-scale subnetworks with shared weights are then run on each scale, as described in the
next section. Each subnetwork’s output operates in logarithmic probability space, that is, no softmax
has been applied to it yet: it is then flattened to a vector and all three outputs are concatenated.
Finally, the “no source” target is appended as the fixed scalar 0, which can be imposed without loss
of generality as softmax is invariant to addition of a constant: in other words, the subnetworks are
free to learn any bias they wish in order to adjust the overall probability of a source being present.

Once all D target dimensions have been assembled, softmax is applied in order to estimate the true
target.

The network is implemented in the PyTorch framework. Training is performed according to Kullback–
Leibler divergence with an Adam optimizer. The learning rate is initially set at 10−3 and multiplied
by 0.3 after epochs 20 and 30, and training is stopped at epoch 40. No weight decay is applied.

2.3 Single-scale subnetwork architecture

Each subnetwork is a straightforward temporal convolution network, consisting of:

• An “embedding” layer, which is really a pointwise convolution from the 186 energy bins to 32
channels, followed by ReLU activation.

• A sequence of 5 convolution layers with temporal kernel size 3 steps and output size 40 channels,
with ReLU activation.

• A pointwise convolution layer outputting log-likelihoods for each of the 6 sources, with no
activation.

No global pooling is used, which results in a limited receptive field of 11 time steps. This would allow
real-time predictions with bounded latency, as the model does not need access to a large quantity of
background events. Specifically, the latency corresponds to the raw measurement becoming available
when the source approximately reaches the cone of angular diameter 2 arctan 4

11 = 40◦ around the
vehicle’s rear-view direction. The latency could naturally be reduced further with a design that
optimizes for it, at the cost of reduced sensitivity.

Convolutions are padded so that the output has the same length as the input. Initialization is
PyTorch’s default weight initialization, which has limited impact since we use the Adam optimizer.

4
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3 Ensembling

30 networks were trained on 90% subsets of the training data. The predicted probabilities were
averaged after softmax to form a raw ensemble prediction that will be passed to post-processing.

If inference speed was a concern, it should be possible to use fewer networks with little loss in
accuracy.

4 Post-processing

A source detection is made by the algorithm when the raw “no source” estimated probability falls
under an empirically determined threshold (0.65). Note that the true probability that there is no
source is in fact lower than this threshold.

If a detection is made, each subnetwork’s output is expanded by nearest-neighbor upsampling so that
it has as many time steps as the finest-scale network.

The source type is chosen as the one with the highest sum of expanded probabilities. Using ex-
panded probabilities here was an oversight, as unexpanded probabilities would be more meaningful
theoretically. However, this should have little noticeable effect on accuracy.

The closest-approach time is determined by first smoothing the expanded probabilities with a Gaus-
sian kernel of standard deviation σ = 7 cells, then weighting each subnetwork’s probabilities by n2

where n is the number of steps in its output, and finally summing across all source types to extract
the time step having maximal probability. A weighting factor of n is necessary to correct for the fact
that the expansion step multiplies the number of cells of the coarsest subnetworks, and we increase
the exponent further to n2 to account for the fact that the finer-scale subnetworks have greater
temporal precision, which reduces noise in the estimation of closest-approach time.

5
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Solution description

Solution structure

You can find whole solution by link: 

Archive “solution.zip” contains all files needed to reproduce my latest solution during competition,

train from scratch and generate new predictions. After unpacking You will find following folders:

/wdata – folder, writable during training. It contains:

/models – contains models pickles and weights generated during training, /im_pickles – contains

normalization constants generated during training, /tmp_files – used to store temorary files when

solution is executed, /output – folder for solution output.

/solution – contains all scripts, dockerfile and shell sctipts: train.sh, test.sh,  test_rep_submit.sh

How the solution works
During training or inference several phases are done:

• Preprocessing (preprocess_*.py). Here raw run files are read and aggregated. The results of

the scripts are stored in tmp_folder.

• 1st level models (generate_*.py). Stacking is used in the final submission, so here first level

models for stacking are trained, along with generating 1st level predictions on train set for

training higher level models. 1st level predictions are stored in tmp_folder, 1st level models –

in models folder, normalization constants - in im_pickles folder. During inference first level

models  and  constants  are  loaded  to  generate  1st lvl  predictions  which  are  stored  inside

tmp_files folder.

• 2nd level models (train_*.py, predict_*.py). Training and inference of  top level models to

solve three tasks : detection, finding closest time, classification. After training the models

can  be  found  in  models  folder,  normalization  constants  -  in  im_pickles  folder.  During

inference the predictions are generated by the models from train folder and saved into output

folder by save_output.py script.

How to reproduce latest submission
The  solution  requires  gpu  machine  with  nvidia  docker  installed.  More  info  in  Tested

configuration part.

1. Inside folder solution run:

docker build -t p_kuzmin .

2. Then run:

nvidia-docker  run  -v  <local_data_path>:/data:ro  -v
<local_writable_area_path/wdata>:/wdata -it  p_kuzmin

Mount /wdata from the solution as wdata.

3. Run

B 2nd Place Writeup: p kuzmin
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./test_rep_submit.sh /data/testing/ <output_filename>.csv

One should run script test_rep_submit.sh to get exactly same results as in latest solution

during  competition  phase.  Running  script  test.sh  will  lead  to  incorrect  results.  The

explanation is following:

test_rep_submit.sh  script  is  same  as  test.sh except  the  following  steps.  It  does  not  clean  the

tmp_files folder and does not generate predictions from three first level models. I have already put

the correct files that should be generated by these first level models into the tmp_files folder. The

reason for this is following: During competition phase I have trained a number of 1st level models:

three boosting models and three multilayer perceptron (mlp) models. Keras package was used to

train mlp models. During training, I have been saving the best model weights via Keras callback

“ModelCheckpoint”. Usually after training this way, one should load best weights and generate

predictions  with  saved model.  Unfortunately  I’ve  accidentally  missed  line  of  code loading  the

weights after training the model. So the 1st level mlp predictions were generated with the model

which had weights  of last  training epoch.  Unfortunately these weights were not  saved. During

competition phase I’ve generated these predictions for training and testing sets once and used them

for higher level models without retraining first level models, so I have noticed the lack of weights,

corresponding to the 1st lvl mlp predictions only when started to prepare scripts and writeup. That is

why these precalculated 1st level test set predictions are needed to generate absolutely same results

as my latest submission. After checking  reproducibility training and testing can be done in usual

way.

Training from scratch and testing
If You wish to train all models from scratch You can run command:

./train.sh /data/training/ /data/trainingAnswers.csv

This script will erase all files inside /wdata folders and will start training and saving all the models

(including three first level mlp models).

After training is done test.sh can be used to generate predictions for testing data or previously

unseen data. To do this run: 

./test.sh /data/testing/<output_filename>.csv

This  script  will  erase  all  files  in   /wdata/tmp_files  and   /wdata/output  folders  and  will  start

predicting. The result will be available in /wdata/output/<output_filename>.csv

Additional info:

Each of three provided scripts will output progress information to the terminal very often. It just

shows that something is happening and the process is not stuck.

test.sh (after training from scratch) and test_rep_submit.sh give a bit different answers for provided

test data : approximately 1% for detection task.

Tested configuration
The solution was developed and tested on the configuration: AMD FX-8320 8-core processor, 24Gb

RAM , nvidia geforce 1080Ti 11 Gb, 7200 rpm HDD, ubuntu-16.04 LTS. Training process takes

about 4.17 hours. Test predicting: 1.35 hours. The solution was also tested on  p3.2xlarge AWS

instance with Deep Learning AMI (Ubuntu) Version 22.0 - ami-01a4e5be5f289dd12 . 
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Models description

Feature extraction
Each  Run  file  was  aggregated  to  1  Hz  rate.  Two  kinds  of  features  were  produced  during

aggregation:

• Aggregation to energy channels (channel features). The energy was binned  to the energy

channels. The bandwidth is set to be 50 kEv (661 kEv*0.075 = 49.575 kEv). Only first 64

channels were taken (0-3.2 MEv).  Higher energies are rare in  data.  Then calculated the

number of events in each energy channel. So each run can be presented as a 64 channel

signal with 1s sampling period. 

• A number of statistics (statistics features) for time between events and event energy inside

aggregation  window (1s):  mean,max,min,median,std,skew and also  count  of  events  in  a

window.  These features are extracted by  preprocess_*.py files. Later only part of these

features is used and some additional features are created in several files (for example in

generate_lgb_features_stats.py function fe()): events count,  energy mean, energy median,

energy std, energy skewness, difference between energy mean and median,something like

signal-noise ratio: the ratio of energy mean and energy std, and maximal signal-noise ratio.

Validation scheme
5  fold  cross  validation  (CV)  with  stratification  by  source  type  was  used  during  training  and

validation. The models trained in each split of CV are saved. Test predictions are done by averaging

the results of such one type models. The random seed for CV was fixed and used the same each

time.

First level models
Six first level models are trained in the following way. 

One can assume that each second of each run is an absolutely independent observation (forget that

we have a number of time-series). Then each observation is labeled as source type of run id it took

from (1-6) or for binary classification 1/0 (source/no source) .

After that it is possible to train a classifier on a huge amount of points. While training auc metric

was used as a score for binary classifiers and accuracy for multiclass. The score of these models is

very low (~0.55 auc for example). But if we check the maximum of the classifier outputs  p for each

run we’ll find out that a huge part of runs with sources has one or more points where classifier is

very confident that there is a source, while maximum confidence for no source is lower:

159



Even simple one model baseline can be done here. Choosing an appropriate threshold for p (about

0.97) can give about 0.93 accuracy for detection task on CV for train data. We can also mark the

point with highest p as the closest to the source point.

So 4 models are trained to predict whether single point is from run with source or without:

• gradiend boosting model in light gbm package (lgb) on  channel features

• lgb on  statistics features

• multilayer perceptron (mlp) in keras package on  channel features

• mlp on  statistics features

Mlp models were trained with decreasing learning rate (like in cosine annealing) for 10 epochs  for

each CV split.

Also two models for multi class classification were trained.

• lgb on  channel features

• mlp on  channel features

The runs  with source  only  were  used  for  training  multiclass  classifiers.  Again  simple  baseline

possible: just classifying each point of the run and then assign the class of the source to the most

frequent class predicted by the model. The accuracy of such baseline is about 0.87 for lgb model.

Second level models
Three different  models  were trained for  the  tasks.  All  of  them are trained on channel  features

combined with the 1st level predictions. All the models were trained in the 5 fold CV.

Detection
All the signals were padded with zeros to the size of 1024. The number of channel features was

lowered  to  16  (by  summing  counts  in  neighbor  channels)  before  combining  with  the  1st level

predicts. All the data was scaled with min-max scaling. Then continuous wavelet transform was

used for each channel with “mexican hat” mother wavelet to get 30 channels from each channel. To

decrease the amount of data the maximum from these each 30 channels in each moment was used to

recreate again 1 channel.  (transformation: number of channels → 30*number of channels (each

channel transformed) → number of channels (maximum  in every 30 channels is taken))

The detection model is 1D convolution network with attention layer and one fully connected layer

after attention:

Input_layer, Conv1D, Conv1D, MaxPooling, Dropout, Conv1D, Conv1D, MaxPooling, Conv1D,

Conv1D,Attention,Dense, Dropout, output_layer

The model was trained with binary focal loss. Focal loss is used to pay more attention to difficult

for classification cases. While training snapshot ensembling was also used. Total number of epochs:

50, periods: 5. Cosine annealing for changing learning rate was used. So after CV 25 (5 splits*5

periods)  models  are  presented.  The  predictions  of  models  for  a  run  are  averaged  and  I  used

threshold 0.5 to classify if run with/without source. Even though we know that competition metric
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penalizes  more  for  FP finding  threshold  for  detection  can  be  not  a  good idea.  We have  great

imbalance of hard cases in train and test data. Leaderboard probing is possible but also can lead to

the overfeat. So I just tried to build as accurate classifier as possible on available data.

Finding closest point to the source
The training was done only on data with sources. Channel features were combined with 1st level

predictions  and  min-max  scaled.   While  training  cropping  (with  probability  0.5)  random  size

fragment with closest point to the source was used. Then each channel was standardized inside such

run and transformed to the length of 1024 with interpolation. Such multichannel signals (cropped or

not) then labeled with a 1-0 mask: a random region near the closest point to the target is labeled

with 1.

The model has 1d U-net structure with binary focal loss. While training decreasing the learning rate

on plateau is used and best model is saved. Each epoch the score was calculated in the following

way.

Getting predicted closest time:

• get prediction mask for each sample a 1024 array for one signal.

• Assign 0 to all points with p (model score) less than 0.8*maximal p

• Calculate closest point: t pred=
∑ t i pi

∑ pi

t – means time 0 to 1024

• Recalculate to the seconds (remember we scaled our signal to 1024 points).

• Clip the time by 30 seconds.

Then score is calculated: -2 points for high difference to the ground truth ( I used max difference for

this 4 seconds), +0...1 points by cosine law (1 in the center, zero at +- 4) for predicted time close to

the ground truth. I have also divided this score by the number of points to get normalized score.

5 models for 5 CV splits were trained. During inference the predictions of these models (masks with

p) are averaged and closest time is predicted according to the procedure like in training, but before

clipping to 30 seconds all points that have predicted source time less then 26 are marked as no

source points.

Classification
For classification channel features were combined with 1st level predictions on channel features and

aggregated  by  each  run  with  different  aggregation  functions:  mean,  median,  max,  min,

std,skewness. The training is done only on data with source presented. Trained model – gradient

boosting over decision trees from light gbm package. 

For  inference  the  predictions  of  5  models  are  averaged and argmax is  used (usual  multi  class

classification with softmax).

So final pipline: preprocessing→ generating 1st level predictions → detecting source→ calculating

closest time → for non zero detected source classify it.
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It’s worth noting that simple baseline with two lgb 1st  level models  can give the score of about 80-

83  on public leader board without any heavy training

Possible improvements and further search
• 1st level predictions of mlp can be trained better: save best epoch/train more with cosine

annealing/snapshot ensembling.

• All wavelet channels can be used to form 2D representation of the signals to train 2D conv

nets on.

• Window Fourier Transform possible can help to generate a little bit different set of features.

• Maybe searching better aggregation window during preprocessing can also help.

• Meta features on the base of Fourier transform can be used and fed into the additional input

of the networks (for detection and classification)

• The code needs refactoring. Preprocessing can be done twice faster minimum (just process

all features in one loop)
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Urban Nuclear Detection Challenge
 (gardn999)

Introduction:

The purpose of this challenge is to accurately locate various types of radiation sources.  Monte 
Carlo particle transport models are used to simulate the presence of these sources along a city street.
Each data file contains a single run with a detector moving along the street at constant speed.  The  
gamma ray detection events are recorded as an energy in KeV and time since the last recording in 
microseconds.  There are 6 source types simulated with the sixth being a combination of the first 
and fifth.   Identification is made more difficult due to the presence of varied levels of background 
radiation from other sources and the possibility of shielding from obstacles along the street.  For 
training, 9700 runs are generated with source type and location information provided.  4900 of these
runs contain no source at all, while the remaining 4800 simulate a single source with 800 for each 
type.  For testing, 15,840 runs with no source information provided are used.

Solution Overview:

This solution is written in Java with five main files. These are Main.java, Testing.java, Run.java, 
RunPeriod.java and RFRegressor.java.  Main.java includes the methods needed for training and 
making predictions in the final version.  All methods not necessary for the final version were moved
to Testing.java.  These include methods needed for solution development and making the plots at 
the end.  A Run object processes a data file containing a single run.  It uses the energy and time 
delay data to produce a  list of RunPeriods, one for each half second interval in a run.  A RunPeriod 
keeps track of counts vs energy for that time period.  RFRegressor is a general purpose regression 
based random forest predictor using RunPeriod produced features for training.

The first part of the solution involves using the training data and truth information to produce the 
random forest model file: 'rfModel.gz'.  Features are defined for each RunPeriod of every run in the 
training data set and input, along with truth information, into the random forest algorithm. The 
resulting trained random forest model is used to produce a series of probability predictions as a 
function of time period. 

For the second part, predictions for source type and location are made using these probabilities vs. 
time period.  Ideally, a radiation source will produce a nice bell curve like shape centered at the 
correct position as shown in plots 5 and 6.  If the probability magnitudes are all too small, then no 
source is predicted.  Otherwise, the source type is identified as the corresponding distribution with 
the largest probability sum.   A probability weighted mean for the identified source type is used to 
estimate a time location.

Training:

The 60 counts vs energy bins in RunPeriod are the primary features used in training.  The 
characteristic energies from the different radiation source decays are noticeable in the plots.  The 
first 4 plots show these elevated counts for source types 1 to 4. The energy bins are defined as: 

counts vs energy bin = sqrt(energy(in KeV) * 2) rounded down to the nearest integer. 

This means that bins for high energies cover a larger energy range.  This helps to provide an 
adequate number of counts at higher energies where the counts vs energy rate is much lower.  

C 3rd Place Writeup: 03-gardn999
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For use as features, adding a quarter of the counts from the previous and next RunPeriods was 
found to improve the training result.  Average energy and maximum energy for the period are also 
included for a total of 62 features.

A total of 6 random forests are trained, one for each source type.  The goal of each random forest is 
to predict whether the corresponding source type is present in the run and, if so, which time periods 
are close to it.  This requires defining truth information for each source type for each RunPeriod in 
each run.  If a source type is not in the run or not near a RunPeriod then its truth value is 0.  The 
nearness to a RunPeriod is defined as:

dt = abs(true time location – time at the center of the RunPeriod)

A RunPeriod has a larger than 0 truth value if dt is less than 10 seconds. Truth value is defined as:

truth = ( 1- dt / (10 seconds) ) ^ 2

which is a parabolic shape on each side with a sharp peak and rapid drop off.  The 62 features and  
truth values defined for each RunPeriod for all runs in the training data are used to train the random 
forests.  The output of this is the model file: 'rfModel.gz'.

Making Predictions:

After training is finished, the resulting model file is used to obtain a probability distribution for each
source type for each run.  These distributions are used to predict the source type and time location.  
Examples of these probability vs RunPeriod distributions can be seen in plots 5 to 12 at the end.  
Plots 5 and 6 show close to ideal cases with a roughly bell curve like shape and the true and 
predicted times closely matched at the center. 

For determining the source type, the maximum sum of any 7 adjacent bins is found for each of the 
source distributions.  The source type with the corresponding distribution with largest maximum 
sum is selected.  That is, unless all maximums are too small, in which case the source type is set to 
0.  The greatest type identification error occurs in distinguishing between source types 1, 5 and 6.  
This isn't a surprise since source type 6 is a combination of 1 and 5.  Plots 7 and 8 show source type
6 being misidentified as type 1.  It can be seen that plot 7 for source 1 and  plot 8 for source 6 are 
very close to the same overall magnitude.   Plot 9 shows a false positive for source 2.  Like most 
false positives, the magnitude is very small and could be eliminated with a slightly tighter cut.

Once the source type is determined, the corresponding probability distribution is used to determine 
source time.  For this, probability is raised to the power of 7.  This puts much more emphasis on the 
highest probability bins. The 80 adjacent bins with the largest prob^7 sum are selected. The prob^7 
and (prob^7 * time) sums are used to obtain a weighted average time: 

predicted time = (sum (prob^7 * time)) / (sum prob^7). 

Plots 10 and 11 demonstrate that this estimate can be resilient to quirks in the distribution and plot 
10 especially demonstrates why such a large number of bins are helpful.  
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Deployment:

This solution can be built with Docker using the following commands while in the solution 
directory:

docker build -t <id> .     (be sure to include the period)

And to run using Docker:

docker run -v <local_data_path>:/data:ro -v <local_writeable_area_path>:/wdata -it <id>

This installs Java 8 in an ubuntu shell where the solution can be run using the scripts: 

for training: 

train.sh <data_folder> <ground_truth_file>

for testing:

test.sh <data_folder> <output_file>

The first row of the output_file is the header: RunID, SourceID, SourceTime.  The rest of the rows 
contain source type and time predictions for each run in the <data_folder> sorted numerically by 
runID.

Performance and Requirements:

Training requires roughly 45 minutes and 4 GB of ram.  Testing requires roughly 20 minutes for the
15,840 events in the testing data set and 1 GB of ram.  Disk requirements are under 100 MB.

Potential Improvements:

Plot 12 is an example of a run in which the source time could have been more accurately located by 
further analysis of the probability distributions.  There are many cases such as this in which the 
source appears to be blocked on one side.   This causes the measured time to shift away from the 
obstruction.  In other cases the obstruction is directly in front of the source causing two peaks as 
seen in plots 10 and 11.

Training on more challenging runs similar to those present in the testing data set should improve the
result.

It should also be possible to better distinguish source type 6 from 1 and 5.
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Plot 2: Counts vs Energy for Source Type 2
(red lines are expected peaks)

Plot 4: Counts vs Energy for Source Type 4
(red lines are expected peaks)

Plot 1: Counts vs Energy for Source Type 1
(red lines are expected peaks)

Plot 3: Counts vs Energy for Source Type 3
(red lines are expected peaks)
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Plot 5: Probability vs Time Period (red line = prediction, black line = true time)

Plot 6: Probability vs Time Period (red line = prediction, black line = true time)
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Plot 7: Probability vs Time Period (red line = prediction, black line = true time)

misided as Source Type 1 (should be Type 6)

Plot 8: Probability vs Time Period (red line = prediction, black line = true time)

the correct distribution (Source Type 6) with slightly smaller overall magnitude 
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Plot 9: Probability vs Time Period (red line = prediction, black line = true time)

false positive (misided as Source Type 2)

Plot 10: Probability vs Time Period (red line = prediction, black line = true time)

good prediction despite small gap in the center
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Plot 11: Probability vs Time Period (red line = prediction, black line = true time)

reasonably good prediction considering size of gap

Plot 12: Probability vs Time Period (red line = prediction, black line = true time)

demonstrates room for improvement in cases with shielding on one side
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Detecting Radiological Threats in Urban Areas

rayvanve —

May 1, 2019

1 Introduction

In the data challenge Detecting Radiological Threats in Urban Areas, one has to
detect and identify illicit nuclear materials. A gamma-ray spectrometer is used
to detect radioactive energy, measured in keV, which I also denote by K. By
equipping a car with such a spectrometer, one can gather measurements from
which it should be possible to identify whether there is a threat; what type of
threat there is; and what the location of the threat is.

The given training dataset contains 9700 example drives for which the pres-
ence and location of a nuclear threat is given. An example (drive) consists of a
datafile with timestamps and the energy detected at that moment.

My solution is based on the following pipeline:

• Data representation. By binning the data with respect to time and keV,
i.e. t and K, it is possible to view the data as an matrix or image. I apply
a Gaussian filter to reduce the input noise;

• Feature extraction:

– Heuristic feature extraction. Given the energy spectra of the sought
sources, I calculate the similarity between the detected spectra and
the source spectra using various measures;

– CNN feature extraction. I trained Convolutional Neural Networks
(CNNs) to predict the source (types), using a sliding window ap-
proach.

• Final prediction. After generating these features for a bunch of different
parameters, I used a random forest classifier to predict the source (type),
and used a simple thresholding heuristic for location detection.

2 Data representation

Ideally, you want to measure the exact radioactive energy at each time step,
allowing you to compare the measured energy to that of a source, e.g. Figure 2.

1
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Figure 1: Image representation of run 107230 using Gaussian parameters σt =
1.0 and σK = 2. This run has a threat of type 131I around time 47.5, which is
not obvious from this graph.

Since the gamma-ray spectrometer has only discrete sampling resolution, this
is impossible.

By ‘binning’ you can view the data as a matrix or image, and approximate
such a energy spectrum. More concretely, for each run I calculated a matrix
M , where MtK is the number of received counts in some time interval [t, t+ ∆t]
and energy interval [K,K + ∆K], for some small ∆t and ∆K.

From what I understood, the gamma-spectrometer has detection variances
given by a normal distribution. Therefore — and to reduce noise — I filtered the
matrix M by convolving it with a Gaussian kernel, parametrized with standard
deviations σt and σK , for the time- resp. energy axis. After convolving the
matrix, I downsampled the matrix for practical reasons — there is no longer a
need for a very fine matrix, since the information is smoothened. An example
of the resulting matrix is given in Figure 1.

By comparing the source spectra to a received data spectrum (a row in the
matrix M), one hopes to find similarities or dissimilarities. Figure 2 displays
such a received data spectrum, after binning and filtering the input. It’s clearly
hard to answer the main questions by simply looking at these graphs.

Moreover, a priori it is not clear what parameters you should choose for
σt and σK . Playing around with these showed that σK is pretty insignificant,
whereas σt has a big influence on the feature generation (described in the next
section).

3 Feature extraction

I wasn’t able to figure out a smart way to create an end-to-end Machine Learning
approach. The main problem being that the examples have varying time lengths.
I tackled this by generating features for each timestep, and then use simple
operators, e.g. max or min, to turn these lists into single values.

More specifically, I came up with two different kind of features.

3.1 Heuristics

The various source (threat) spectra can be represented as a vector ~Sx,y, where
x is the source type x ∈ {HEU, WGPu, 131I, 60Co, 99mTc}, and y ∈ {0, 1}

2
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Figure 2: On the left: the energy spectra for the third threat, 131I — iodine. On
the right: the energy spectrum of the transformed data at time step t = 47.5,
the exact time step where the source should be located.

indicates whether it’s shielded.
Similarly, let the data be represented as a matrix convolved with a Gaussian

kernel parametrized by (σt, σK). Then, for each time step t the spectrum of

data, a row in the matrix M , can be viewed as a vector ~Kt.

3.1.1 Distances

For each time step t and threat (x, y), I calculated a lot of metrics measuring

the similarity between ~Kt and ~Sx,y, a few that worked well were:

Hellinger distance I got the best results using the Hellinger distance. For
every (discretized) time step t, the Hellinger distance between ~Kt and
~Sx,y reads as

1√
2

∥∥∥∥∥∥

(
~Kt

‖ ~Kt‖1

)1/2

−
(

~Sx,y

‖~Sx,y‖1

)1/2
∥∥∥∥∥∥
2

.

Now, (local) minima of this function should correspond to the potential
existence of a threat. Figure 3 illustrates that this measure is indicative
for the source presence/type.

Cosine similarity Another reasonable similarity measure is the angle between
the data and the source types, i.e.

~Kt · ~Sx,y

‖ ~Kt‖2‖~Sx,y‖2
.

Furthermore, I also calculated the cosine similarity by replacing ‖·‖2 with
the weighted L2-norm

‖~v‖2,w :=

√∑

K

(~wK)
−1 · (~vK)

2
, ~w =

1

N

∑

t

~Kt,

3
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Figure 3: The calculated Hellinger distances for run 107230, preprocessed with
Gaussian parameters σt = 1.0 and σK = 2. This run has a source of type 131I
around time 47.5. The plots display the Hellinger distance on the y-axis against
the time t on the x-axis.
The left plot displays the distance of ~Kt to S131I,0, the energy spectrum of the
unshielded 131I threat; it has a clear minimum around the correct time step.
The right plot shows the distance to SHEU,0; as desired, there is no clear extrema
in the graph.

Figure 4: In the same situation as before, the images from left to right illustrate:
the cosine similarity, the weighted cosine similarity and the L2-distance. As
before, the peaks in this graph correspond to the source location.

that is, by weighting the norm with the inverse of the mean received energy
spectra. A peak in these cosine similarity measures should correspond to
a source threat, see Figure 4.

Normal distances I also simply calculate the L2-distance, i.e.
∥∥∥∥∥

~Kt

‖ ~Kt‖2
−

~Sx,y

‖~Sx,y‖2

∥∥∥∥∥
2

.

This gives reasonable results, but not as good as the ones described above.

The above measures are implemented in the source_inner_products()

method in the file framework.py.

3.1.2 From distance sequences to features

I wanted to feed the entire distance sequences, cf. Figure 3 and 4, into a Machine
Learning model in order to make final predictions. Unfortunately, I couldn’t

4
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figure out a clean way to do this. Instead, I calculated some simple statistics of
the sequences: max, min, mean, std, kurtosis, argmax, argmin, snr, max after
detrending the signal, min after detrended, etc. These quantities capture some
(important) relevant properties, while being fixed-dimensional and therefore
Machine Learning friendly.

By detrending the sequence, i.e. subtracting its mean, I hoped to eliminate
the background noise — this worked reasonably well.

An issue with the these distance features: the sixth source type is not avail-
able. I hoped that a machine learning model would be able to distinguish
between the different types on basis of (enough) features.

3.1.3 Multi scale features

The cars that collect the data have varying speed, and sources have different
distances to the road. This implies that relevant features will appear at different
(time) smoothing scales. From some sources we will receive radioactivity for a
long period, while others are only seen for a small amount of time.

To tackle this, I generated multiple images for each example by varying σt,
the Gaussian standard deviation in the t-axis. I generated the features described
above for each of the different smoothing scales σt ∈ {0.15, 0.25, 0.5, 0.5, 0.75, 1.0, 1.25, 1.5, 3.0}.

3.2 CNN

The above features work reasonably well, but have two main downsides: cal-
culating such distances requires an energy spectrum for every threat type; the
features distances are calculated time stepwise, ignoring information in the sur-
rounding time steps.

To overcome these issues, I trained a Convolutional Neural Network on the
input data, because CNNs are quite well suited for processing spatial informa-
tion. By training the network directly on the input data, I eliminated the need
for threat energy spectra.

3.2.1 Data input

I presumed that the matrix representation that I used in the previous feature
generation, was not well suited for Neural Nets. Looking at Figure 1, it is
clear that most of the interesting information is contained in a relatively small
energy span, say keV between 20 − 500. Moreover, the gamma-spectrometer
has a lower detection resolution for the higher energies, i.e. there is a higher
variance in measurements for higher energies.

I figured this could be solved by creating bins, in the energy-axis, with
increasing width. By increasing the widths of keV bins linearly, one gets an
image with more detail in the lower keV-region, see Figure 5. Note that these
images are still smoothened by applying a Gaussian kernel. The details indeed
seem to be better spread in these images.
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Figure 5: Another image representation of run 107230 using Gaussian parame-
ters σt = 1.0 and σK = 1, cf. Figure 1. This image is generated using 250 bins
in the keV axis, with the bin width linearly increasing.

3.2.2 Model setup

The varying input length of an image is an issue: (normal) Neural Nets take a
fixed size input. I tried combining a CNN with a RNN for creating an end-to-end
machine learning model, but that didn’t give any reasonable results. Instead, I
went for a sliding window approach: I train a CNN model to predict the source
(type) based on a fixed size part (window) of the data; then in the prediction
phase I slide this window over the entire input sequence.

A network layout that turned out to be quite successful, is one where the
first convolutional layer has a kernel that spans (almost) the entire keV-axis.
Intuitively, this corresponds to a model where the first layer takes various inner
products with the keV-axis. This approach is very similar to the heuristic
approach described above, however, now we do not require explicit knowledge
of the energy spectra of the threats. In the appendix such a model is visualized;
the architecture layout is generated in the method get_model().

After training such a CNN model, I use its predictions as features for my
final classifier. That is, by sliding a window over the input matrix, you get
classification predictions for each of the time steps. Given the list of results, I
use the same tricks as before to turn this into fixed-dimensional features, i.e. by
calculating max, min, mean, std, kurtosis, argmax, argmin, snr, etc.

Again, there are a lot of hyperparameters to be chosen, with the most import
ones being the number of epochs, the window size, the time smoothing standard
deviation σt, and the number of bins in the keV-axis. Because I didn’t figure out
a way to let a single model incorporate all of these parameters, I simply trained
a bunch of models for a reasonable combination of these hyperparameters. From
all these models, I picked the 30 best performing ones, and used these models to
generate features, which I used in my final model to do the actual predictions.

In terms of epochs, I started with training the CNNs using a reasonable
number of epochs 8–14. However, after handing in solutions based on these
models, it turned out that running the neural nets for way longer, like 40–60
epochs, gave an improved provisional score.

6
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4 Final predictions

The above methods generate a bunch of features for each of the examples. Given
this set of features, all we have to do is actually answer the questions:

• does this example contain a source, and if so, what is the type of source;

• if it contains a source, what is the location of the source.

I answered these questions separately.

4.1 Source (type) prediction

For the source (type) prediction, I simply fed all the features generated above
into a random forest classifier. First, I used such a random forest to predict
whether the example contains a source (threat). If so, I used another random
forest to predict the actual source type.

My idea was that a random forest classifier is basically a simple thresholding
algorithm, which should perform reasonable for the kind of features I’ve gener-
ated. An question like ‘does this example have a Hellinger distance below value
X?’, can be used to exclude or include certain source (types). To circumvent
feature noise, I included a feature elimination step that removes some of the
nonsense features.

It could be possible that a different machine learning algorithm performs
way better. I didn’t really spend time investigating this, since most of the gains
are probably gathered from generating betting features.

4.2 Source location prediction

I had some serious problems creating an accurate location predictor. The above
model performed reasonably well in predicting the source (type), but it doesn’t
give any insight into where the source is located.

My final location prediction basically looks at the minimum Hellinger dis-
tances. Recall that for each example I generated a bunch of images by varying
the Gaussian smoothing parameter σt. On the training set, I calculated thresh-
olds such that a Hellinger distance below the thresholds (always) corresponds
to a source. By comparing the actual Hellinger distances to these thresholds,
I (more or less) return the location of the most indicative Hellinger distance.
This is implemented in predict_location_thresholds_new.

I also tried predicting the location using CNNs, by augmenting the network
with an extra output node that corresponds to the location of the source in-
side the window. Although this gave reasonable results, the Hellinger heuristic
turned out to be a better location predictor. I ended up using the CNNs location
prediction only if the above heuristic was based on a very ‘weak’ signal.
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5 Conclusion

All in all, my approach gave reasonable results. I’m not really charmed by
the approach, because it’s based on a lot of different ingredients. It would’ve
been way cleaner to train an end-to-end model, but I couldn’t come up with
a way to do this — my RNNs failed to give any sensible results. I was quite
surprised that simply using some heuristics, e.g. the Hellinger distance and the
cosine similarity, in combination with a simple random forest classifier gave a
reasonable provisional score. The CNNs boosted my provisional score only by
a few points.

It was a fun challenge to work on! The problem is very difficult allowing for
a lot of different solution methods.

5.1 Flaws

I was too lazy to properly setup a train, test and validation data split. This pre-
vented me to do proper generalization analysis. Counter-intuitively, by handing
in solutions based on CNN models that were trained for 40+ epochs, my pro-
visional score improved. I suspect that these models sort of generalized for the
provisional dataset, but failed to generalize for the final dataset.

I wonder whether some of my submissions with lower provisional scores,
actually higher final scores.

5.2 Reproducibility

In my development phase, I trained a bunch of CNN models. I choose the 30 best
performing models as input to my final solution predictor. Clearly, regenerating
these models, as happens with train.sh, won’t produce the exact same models
due to randomness. Since the train.sh pipeline only regenerates the specific
CNN models that I choose during development, it’s very well possible that the
freshly trained models perform slightly worse than my final solution. If this
appears to be the case, simply rerunning the training-pipeline will give different
results.
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A CNN Layouts

(a) Layout of the CNN. It takes
an window of 60 time steps. In
the first layer, the keV axis is
reduced to size 4, which is more
or less similar to taking inner
products along the keV axis. It
is trained as a classifier on 7
classes: no source, or any of the
6 source types.

(b) Similar layout to the left, but this
model output consists of two parts: a clas-
sifier for any of the 7 classes, and a source
location predictor. If there is a source in
the window, then the location output is
trained to return the source location inside
the window.

9
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Detecting Radiological Threats in Urban Areas 

 
 

 
handle: cyril.v 

 

1. Model summary 
My solution is predominantly based on multiple deep learning models with 

convolutional and Long Short-Term Memory (LSTM) layers on binned energy events 

counts by time. Three deep learning models are trained with binned data sequences : 

source detect and type identifier to find probability of sequence containing artificial 

radiation source and select source type identifier, source window detector to find the 

probability of on already detected source sequence window to contain the least source 

distance and source timing model to find most probable time of the least source 

distance. 
 

2. Model description 

a. Data preprocessing 
Data are first binned the same way on each model with training and testing. For 

each run data are extracted from csv file (energy and last event timing). Cumulative 

sums are done on lasts events timing to obtain constant time offset of each event 

and convert to seconds. Events counts are binned with energy histogram on each 

time step selected of 0.5 second (with python numpy histogram2d function). 

Histogram bins are 79, spaced evenly on a log scale between 0 and 4000keV energy 

(python numpy geomspace function). 

Each model gets in input window of 30 seconds of binned histogram, so 60 intervals 

histogram of 0.5 second resulting in input of shape 60x79. 

Training and validating windows data are selected specifically on each model. 

Testing windows data are from the sliding window of all histogram sequence. 
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b. Source detect and type identifier 
Source detect, and type identifier deep learning model 

is used to determinate if a sequence contains or not 

contains an artificial radiation source and to identify the 

source type. 
It is composed of three stacked modules of same layers 

in front of a LSTM layer with tanh activation function. 
The stacked modules are composed of a convolutional 

layer with 128 filters and kernel size of 5, with dropout 

to avoid overfitting followed by a pooling layer. 

The outputs layers are a dense layer with sigmoid 

activation function to obtain source detection and a 

dense layer with softmax activation function to get type 

identifier of source. Small random gaussian noise is 

applied to input data on training to avoid overfitting. 

Training is done on 1 phase of 100 epoch and 9 phases 

of 20 epoch. On each phase 80% of data is randomly 

selected to train and 20% to evaluate. At each epoch 

best validation accuracy model is saved. 

 

 

 

 

 

c. Source window detector 
Source window detector deep learning model is used 

on sequence of data with source detected by the first 

model to evaluate the probability of slice window of a 

sequence to be in the least distance of radiation 

source. 
It is composed of a convolutional layer with 256 filters 

and kernel size of 3, with dropout to avoid overfitting 

followed by a LSTM layer and a dense layer with 

sigmoid activation function. 

The outputs layers are a dense layer with sigmoid 

activation function to obtain source detection and a 

dense layer with softmax activation function to get 

type identifier of source. Type identifier detected on 

this model is not used on testing but present to format 

model weights on training and obtain better accuracy. 

Small random gaussian noise is applied to input data 

on training to avoid overfitting. 
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Training is done with 2000 epoch. 75% of data is randomly selected to train and 

25% to evaluate. Only sequence with artificial radiation source is used on training. 

At each epoch best validation loss model is saved. 

 

 

d. Source timing 
Source timing deep learning model is used to 

determinate time at which the detector was closest 

to the source in a sequence. 
It is composed of three stacked modules of same 

layers in front of a LSTM layer with tanh activation 

function. 

The stacked modules are composed of a 

convolutional layer with 128 filters and kernel size 

of 5, with dropout to avoid overfitting followed by 

a pooling layer. 

The outputs layers are a dense layer with linear 

activation function to obtain source time in the 

window and a dense layer with softmax activation 

function to get type identifier of source. Type 

identifier detected on this model is not used on 

testing but present to format model weights on 

training and obtain better accuracy. Small random 

gaussian noise is applied to input data on training 

to avoid overfitting. 

Training is done with 2000 epoch. 75% of data is 

randomly selected to train and 25% to evaluate. 

Sequence with no artificial radiation source is used 

on training but not in loss function of timing. At 

each epoch best validation accuracy model is 

saved. 
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e. Solution export 
On solution export, each data sequence are cuts with the sliding window of all 

histogram sequence. The three models are run on each window. 

Presence of artificial source in sequence is detected with the first model if the 

maximum predict of windows of sequence is superior of 0.95 to avoid a maximum 

of false positive. 

If presence of source is detected, 30 consecutive windows in sequence is selected 

with maximum sum of squared probability result obtained on source window 

detector model. Source time is obtained with the weighted average of the source 

timing model on the 30 windows selected. Weights are the power 4 of probability 

of source window detector. 

 

3. Solution implementation 
Models are implemented in python 3 with Keras and Tensorflow backend. 

Training is done on training data with: 
- main-hitid.py: Train source detect and type identifier deep learning model, export 

model in hitid31.best.hdf5 file 
- main-in.py: Train source window detector deep learning model, export model in 

in.best9.hdf5 
- main-time.py: Train source timing detector deep learning model, export model in 

hitidtime10.best.hdf5 
Solution export is done on testing data with main-test.py 

Python requirements are: tensorflow-gpu, keras, numpy, pandas and more_itertools 

4. Solution testing 
Solution container was tested with nvidia-docker on GPU enabled host p3.2xlarge AWS 

instance. 

 

Provided zip file contains all models training and test source code with already trained 

submission models files. 
 

Solution export with testing data finish in 30 minutes: 

./test.sh /data/testing/ solution.csv 

 

Training of models (output in current directory) finish in 3 hours and 15 minutes: 

./train.sh /data/training/ /data/trainingAnswers.csv 
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Marathon Match - Urban Radiation Detection  
Solution Description 

 
1. Introduction 

● Name:  
● Handle: wleite 
● About you: Computer Forensics Expert, long time member and TopCoder 

enthusiast. 
 

2. Overview 

● My solution basically counts the number of detection events in a given time window, 

binning the data into “channels”, depending of the energy level associated.  

● Binary models, that indicate whether in a given time there is a source of a certain 

type (1 to 6), were trained using features derived from the mentioned counts. 

● Different time window lengths are used: in a given time (T) of the simulation, 

detected events between (T – dt) and (T + dt) are counted. For (dt), the window 

length, three different values were used: 250, 500 and 750 ms, and the best 

prediction (higher probability result) from these different time windows is used. 

 

3. Approach Details 

● Energy Bins: 800 bins were used, in the range from 0 to 3000 keV. After the raw 

counting for a given time window is made, a smoothing process average counts 

from a neighborhood of +/- 4 bins. 

● Time Positions: For each time window (250, 500 and 750 ms), the simulation 

interval is covered by steps of the same length of the window, starting from 30 

seconds, as we don’t have detection events before that. For example, if the time 

window is 500 ms, counts will be made considering the intervals centered in 30 

[29.5, 30.5], 30.5, 31s and so on.  

● Filtering Positions: as the number of time positions on each simulation could be 

very high, only the “most promising” are used. A heuristic is used here, that 

compares the time position with its neighbors, selecting the ones higher counts. For 

training, the best 150 samples are used, and for testing 300 samples. 
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● Model and Features: the underlying model uses random forests of 1024 binary 

classification trees. There is one model for each type of source (1 to 6) and for each 

time window (250, 500 and 750). For the features, raw values of each “channel” 

(bin) are used, together with relative values, which compare counts for the current 

time position with adjacent ones, emphasizing variations on the observed values. 

● Hard Cases: as a final attempt to improve the performance in “hard cases”, which 

should be more frequent in testing set according to the problem statement, another 

set of models were trained using only the 1500 “harder” cases from the training set 

(instead the whole set). To identify these hard cases, the solution was executed 

twice using the “local test” mode, splitting training data into two equal parts (50/50). 

In the first run, the first half was used as training and the second was evaluated and 

compared with the ground truth. In the second execution, sets were inverted. All 

simulations that were incorrectly identified (wrong type of source or source far from 

the correct time) are included as “hard cases”. The cases correctly identified but 

with a low confidence level (close to the used acceptance threshold of 0.152) are 

also added, until 1500 cases are selected. In total, 36 models were used: 2 (hard or 

regular) * 6 (source types) * 3 (250, 500 and 750 ms for time windows). 

● Inference: positions in time, for each time window, are evaluated using the trained 

models and the best (higher confidence value is used). “Hard models” and the 

regular models are mixed using a weighted average, with 40% and 60% weights, 

respectively. A final minor optimization averages the value of predicted time of a 

source detection with the (up to) 5 higher confidence positions. That improved 

precision in local tests, but I am not sure how effective it was in the actual testing 

cases. 

 

4. Dockerized Solution 

It can be download from the following Google Drive link. It was tested using an 

AWS m4.10xlarge. It contains a README.txt file with useful information. Inference 

took about 1 hour to run in that AWS instance. Training took less than 24 hours in 

my home PC (24 threads), so it should faster than that in the used AWS instance. 

Training could be much faster with less tree (e.g. 128 instead of 1024 would reduce 

total time by a factor of 8), without losing much the quality of predictions. 
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03 May 2019 
 

 
 

Topcoder handle: smg478 
 
Solution summary of Radiological Threat detection challange (9th place) 
 
In this challenge, I have developed an algorithm that is inspired by radiation detection theory 
and spectroscopy techniques. To built machine learning models, I have applied spectrum based 
features which considers important peak information as well. I have built a lightweight model 
that trains and predicts fast and is scalable to larger applications. 
 
One of the interesting aspects of this competition was that the data was variant in both time and 
space dimensions. The signals (full-energy peaks) can be found from short time spans to long 
time spans, also from short distances to long distances. Thus, a preferable method to search for 
signals would be to look into smaller segments of data, rather than the full-run data. Therefore, 
my preferred method of building models was a sliding window approach in the full-run data. 
 
1. Training data preparation: 
Training data was generated by slicing the full-run data into smaller segments. Segment sizes 
were selected based on two scenarios: one was based on fixed number of counts (fixed sized 
windows), while another was based on variable number of counts, which was calculated from 
the total number of counts in a train file (variable size windows). Fixed size windows (e.g. 
window size = 3000 and 6000 counts) can serve as local time-invariant samples. However 
variable size windows (e.g. window size = total counts / 30) provides us an opportunity to look at 
the data from a global perspective. If a source was present, 7 different sized segments were 
generated from close to the source location, otherwise, less than 15 segments were randomly 
generated from uniformly distributed locations. Approximately 81,000 training segments of 
different sizes were created from 9700 competition data available. Fig 1 and 2 show schematic 
diagrams of train sample generation. Data from the first 30 seconds was also ignored during this 
process.  
 
2. Feature generation: 
First, a gamma-ray spectrum was generated from each segmented train sample. Selecting 
bins of 30 keV resulted in a 100 bin spectrum and values from each bin were treated as a 
feature. Next, another 51 features were calculated based on peak ratios. Bin counts of important 
peaks associated with a source were used to calculate peak-to-peak ratios and 
peak-to-compton ratios. These ratios play an important role in radiation detection and 
measurement and provide useful information to distinguish between different radioactive 
sources. In total, 151 features were used for machine learning model training. 
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3. Model construction: 
Machine learning (ML) models experimented in this competition were mainly based on neural 
networks. I have designed a hybrid model of Convolutional Neural Network (CNN) and 
Multi-Layer Perceptron (MLP) neural network that learns from 151 features. Though only CNN 
or MLP can be used as a model architecture, the experimental result shows combining both of 
them provides better accuracy and makes them less prone to overfit. In the hybrid model, 64 
feature-maps were extracted from 151 input features using a 2-layer CNN model. The CNN 
features were then concatenated to original 151 features. Finally, a two-layer MLP network was 
used which takes input from all 215 (151+64) features before the classification layer. This model 
achieved a provisional score of 85.62 in the leaderboard (Table 1: expt#10). This model is 
referred to ANN-CNN model in table 1. Fig 4 shows the schematic diagram off ANN-CNN model 
architecture. 
 
Further, I have experimented with Long Short Term Memory (LSTM) networks and Light 
Gradient Boosting Machine (LGBM) to compare the performance. All of the 3 models perform 
similarly in the validation data. However, my designed architecture was lightweight and fast to 
train and test.  
 
4. Training: 
Keras ML library was used for neural network construction and training. The ANN-CNN model 
was trained for 30 epochs with a learning rate of 0.001. Categorical cross entropy was used as 
a loss function. I have also experimented with focal loss. However, both loss functions 
performed similarly. While the ANN-CNN model takes about 10 minutes to train on 5-folds, 
LSTM and LGBM models take much higher time to converge (i.e. 25 minutes each) on an 
NVIDIA Titan X GPU. 
 
5. Inference: 
During inference, 200 equally spaced anchor points were selected from each test file. From 
each anchor point, the model predicted the probability of a source using 3 different window 
sizes. Multiple window prediction strategy can also be referred to Test Time Augmentation 
(TTA), and this improved the provisional leaderboard score considerably (Provisional LB: 82.3 
to 85.3)(Table 1: expt # 4, 5, 6).  However, doing more TTA would improve the score further, but 
for maintaining the time constraint, 3 TTA strategy was adopted. Predictions were ensembled 
from all 5 folds and finally, voting was used to decide source type and approximate location. 
 
6. Finetune source location: 
I have further adopted a rule-based method to finetune the source location. After finding the 
approximate location of source from neural network models, further peak search was carried out 
in the nearby area. The measure for the nearby area was selected based on the total number of 
counts in the test file (similar to the method of selecting a variable size window, except search 
area = total counts / 20, from approx. location). I have selected the location where the highest 
number of counts for the associated peak was found in a sliding window manner. This 
approach saved the time in finding the location by scanning a segment of the test file and  
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produced a solid boost the provisional score from 80.0 to 82.3 in the leaderboard (Table 1: 
expt#3,4). 
 
 

 
Fig 4. ANN-CNN neural network architecture 
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Table 1: Ablation study  
(Prediction time was based on an 8-core Intel i7 processor with 32 GB RAM and SSD) 

 

Expt. 
No# 

Description Provisio
nal 
score 

Data 
proces
sing 
time 

Training 
time(GPU/CP
U) 

Predicti
on time 
(CPU) 

1 Single fold, CNN model, full-length 
training on raw data (100 features: 100 
bin spectrum values only), rule-based 
predictions on full-length data 

67.0 0 2 min /30 min 8 hr 

2 Single fold, CNN, segment-wise 
training (100 features),  segment-wise 
predictions 

74.0 30 min 2 min / 30 
min 

2 hr 

3 Single fold, ANN model, segment-wise 
training (100 features),  normalize data, 
segment-wise predictions 

80.0 30 min 2 min / 30 
min 

2 hr 

4 Single fold, ANN-CNN model 
segment-wise training (100 features), 
normalize data,  segment-wise 
predictions, Rule-based time 
processing, no TTA 

82.3 30 min 2 min / 30 
min 

3 hr 

5 3-fold ANN-CNN models, 3-TTA  84.59 30 min 6 min / 45min 4 hr 

6 5-fold ANN-CNN models, 5-TTA  85.29 30 min 10 m/1.25 hr 6 hr 

7 5-fold ANN-CNN, LGB, LSTM models, 
5-TTA 

85.43 30 min 1 hr / -- 13 hr 

8 5-fold ANN-CNN, LGB, LSTM models, 
5-TTA - w/o time processing 

84.09 30 min 1 hr / -- 12 hr 

9 5-fold ANN-CNN, LGB, LSTM models, 
3TTA, peak-ratio features added (151 
features, 100 bin spectrum values + 51 
hand engineered peak ratio features) 

85.46 30 min 1 hr / -- 8 hr 

10 5-fold ANN-CNN models, 3TTA, 
peak-ratio features added (151 features, 
100 bin spectrum values + 51 hand 
engineered peak ratio features) 

85.62 30 min 10 min / 1.25 
hr 

6 hr 

11 5 fold ANN-CNN, LGB, LSTM models, 
3-TTA (151 features) - used pseudo 
label data for training from the test set 
(from 85.62 provisional score file)  

85.34 30 min 30 min + 10 
min + 6 hr +1 
hr + 10 min = 
~8 hr 

8 hr 
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########################################################################### 
Code docomentation 
########################################################################### 
 
The folder consists of 7 scripts that do data preparation, training and prediction. Scripts are 
written in python language. 
 
Training and testing both can be done on a CPU based machine. However, training in a GPU is 
much faster. Testing using GPU doesn’t concern much. 
 
#======================================================================= 
# Script description  
#=======================================================================
Data preparation 
01_make_slice_data.py 
02_make_features.py 

- Script 01 makes approximately 81,000 segmented data from 9,700 training data 
available and saves newly generated data on “wdata/training_slice” folder and 
corresponding answer file as 'wdata/trainingAnswers_slice.csv'. 

- Script 02  takes the files generated by script 01, creates 151 features from each file and 
finally save everything as 'wdata/train_feature_bin_30_slice.csv' 

 
# Training 
03_train_ANN_CNN.py 

- This script trains a hybrid model of convolutional neural network (CNN) and multi-layer 
perceptron (MLP) neural network using training features generated in script 02. 

- Model weights will be saved in ‘weights/’ folder as well as in ‘wdata/weights’ folder 
 
# Inference 
06_predict_25.py 
07_predict_3000.py  
08_predict_6000.py 

- 3 prediction files are identical except they predict on different segment (window) sizes. 
The prediction was carried out on 200 anchor points. These scripts use weights 
produced from script 03. 

- Script 06: window size = total counts in test file / 12 
- Script 07: window size = 3000 counts 
- Script 08: window size = 6000 counts 

- 3 different thresholds (e.g. 3, 5 and 7 out of 200) were used to judge a test file as source 
positive or negative. 

- The reason I have used 3 scripts for prediction instead of 1 because I found it little 
complicated to run parallel jobs with tensorflow models. So I have saved time by using 3 
scripts running in parallel. 
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- Output files will be saved under ‘wdata/submits’ folder 
 
# Ensemble predictions 
09_vote_ensemble.py 

- This script ensemble the prediction of the source type and location by voting style from 
the 9 output files produced from inference (script 06, 07, 08).  

- The output file will be saved under ‘wdata/submits’ folder 
 
# Finetune source location 
10_timeProcess.py 

- Outputs the final predictions and saves it to the current directory. 
 
 
#=======================================================================
How to run the code 
#======================================================================= 
The code is expected to run in Docker container. Docker is assumed to be installed in the host 
computer. This code doesn’t  need a GPU for training or inference. Dockerfile file is sufficient for 
a cpu only machine. It installes necessary python dependancies on a Ubuntu 16.04 OS. 
 
# start docker 
sudo service docker start 
# build solution from the folder that contains Dockerfile 
docker build -t smg478 . 
# Strat container 
docker run -v <local_data_path>:/data:ro -v <local_writable_area_path>:/wdata -it <id> 
# Inference on local built model  
bash test.sh /data/testing/ solution.csv 
# Ttrain 
bash train.sh /data/training/ /data/trainingAnswers.csv 
# Inference on newly trained model - produces solution file on current directory 
bash test.sh /data/testing/ solution.csv 
 
Expected running time: 
Local PC config: Ubuntu 14.04, Intel i7 (8-core), 32 GB RAM, SSD 
Disc space required: 7 GB for processed data file + 5 MB for model weights 
Training 
bash train.sh /data/training/ /data/trainingAnswers.csv 

-  (2.0 / 1.0) hr in a (CPU / GPU) based machine 
Testing 
bash test.sh /data/testing/ solution.csv  

- 6 hr in a CPU based machine (+ 30 min, if processed data file needs to be generated 
again. Usually this file will be generated during the training phase (200MB)) 
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########################################################################## 
# Important note on reproducibility 
########################################################################## 
 
The generation of final prediction uses some statistics from training data. Training statistics are 
calculated from the segmented data generated by script 01. Data segmentation process has a 
random variable for the runs that don’t have any source (see Fig 2). Therefore, every time data 
processing is done, statistics will be a little different. If one uses the same processed train data 
for prediction, results will be the same every time. 
 
However, I found a typo in my data processing script (script 01) in the later stage of this 
competition which produced wrongly labeled segmented data. And when I corrected the 
mistake, I accidentally overwrote the previous file that produced exactly my final submission 
(provisional 85.62). Therefore I am unable to produce the exact same submission now due to 
this missing statistics. Now in this folder, I have provided the correct version of script 01, and it 
will produce newly segmented train data as well as statistics. I expect by using the provided 
locally built model weight files, results will be close to 85.62+- 0.15. 
 
Finally, retraining would produce similar results as well. I expect after retraining, the 
final/provisional score would be in a reasonable range. 
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Detecting Radiological Threats in Urban Areas - Solution Description (cannab) 
 
 
Overview 
Congrats on winning this marathon match. As part of your final submission and in order to receive 
payment for this marathon match, please complete the following document. 
 

1. Introduction 
Tell us a bit about yourself, and why you have decided to participate in the contest. 

●  
● Handle: cannab 
● Placement you achieved in the MM: 10 
● About you: I’m independent Software Developer/Data Scientist interested in hard 

algorithmic challenges and machine learning 
 

● Why you participated in the MM: Interesting problem. Wanted to try NN algorithms in 
new area 

 
2. Solution Development  

How did you solve the problem? What approaches did you try and what choices did you 
make, and why? Also, what alternative approaches did you consider? 

● From the start, I have wanted to solve this problem using Neural Networks (NN). So 
I’ve tried to combine all tasks in one NN – Source Type classification, Time closes to 
Source, and additional auxiliary output for movement speed (Speed/Offset value from 
answerKey.csv)  

● Augmentations and dropout used to prevent overfit. 
● Simple average of two folds out of 20-fold split (due to training and testing time limit 

and hardware) used for final results.  
 

3. Final Approach 
Please provide a bulleted description of your final approach. What ideas/decisions/features 
have been found to be the most important for your solution performance: 

● Finally, I’ve used 1-dimensional version of DPN68 Neural Network architecture for  
encoder and classification part ( https://arxiv.org/pdf/1707.01629.pdf ) 

● It was critical to increase Receptive Field of the NN. So, I’ve increased Stride value 
for first convolutional layer from 2 to 4 and for first max pooling layer from 2 to 4. Also 
added additional last layer to encoder with wide kernel size (kernel=21). This helped 
a lot for classification task. 

● After common encoder connected two classification head (for main classification and 
for Speed prediction) and segmentation head to find Source location. 

H 10th Place Writeup: cannab
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● For segmentation part used simple 1-dimentional decoder architecture similar to Unet 
( https://arxiv.org/pdf/1505.04597.pdf ). Ground truth area considered: abs(t - 
sourceTime) * speed_offset < 0.25 

● For training as Neural Network inputs used crops with 49152 time points with 168 
features vector for each timepoint: 

○ Time from prev event, Energy Value, Energy Value / Time normalized with 
global std and mean values 

○ Time from prev event, Energy Value, Energy Value / Time normalized with 
local (from current run) std and mean values 

○ Energy counts in interval of +- 0.5s around current time point, clustered to 81 
bins (with step of 50) 

○ Clustered Energy value to 81 bins (with step of 50) for each time point (Just 
flag 1 or 0) 

● Loss function used for training segmentation part is combination of Dice and Folca 
losses: (Dice + 10 * Focal). CrossEntropyLoss for classification and L1 loss for 
Speed.  

● Simple augmentations used to prevent overfitting: 
○ Skip random time point 
○ Duplicate random time point 
○ Random shift/scale values for some points 

● Test runs predicted using all run values. If Predicted Source Type > 0 and there 
are time points in segmentation output with probability > 0.5, Then center of 
largest predicted segment taken as Location of Source. 

 
4. Open Source Resources, Frameworks and Libraries 

Please specify the name of the open source resource along with a URL to where it’s housed 
and it’s license type: 

● Anaconda as base Python 3 environment, www.anaconda.com  
● Pytorch, https://pytorch.org  
● Pretrained models, https://github.com/Cadene/pretrained-models.pytorch  

 
5. Potential Algorithm Improvements 

Please specify any potential improvements that can be made to the algorithm: 
● Use for ensembling something like LightGBM to predict Source Type using many 

statistical features (planned but had no time for this) 
 

6. Algorithm Limitations 
Please specify any potential limitations with the algorithm: 
Training and prediction are very slow. 

 
7. Deployment Guide 

Please provide the exact steps required to build and deploy the code: 
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 Dockerized version prepared as requested. For clean installation python 3 required with 
libraries (all in anaconda3 default installation): numpy, sklearn, + install Pytorch 
 

8. Final Verification 
Please provide instructions that explain how to train the algorithm and have it execute against 
sample data: 

 train.sh and test.sh scripts meet required specification. 
 

9. Feedback 
Please provide feedback on the following - what worked, and what could have been done 
better or differently? 

● Problem Statement - ok. All clear 
● Data - ok. No leaks and other problems. 
● Contest – Very good contest. A lot of prizes, interesting task. Want more such 

contests) 
● Scoring - ok 

 
NOTE: Please save a copy of this template in word format. Please do not submit a .pdf 
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PASDA’s Methodology: Detecting Radiological Threats
in Urban Environments

May 1, 2019

1 Introduction
The challenge Detecting Radiological Threats in Urban Areas is about detecting, identifying, and
locating radiological material using a moving sensor in an urban environment. See the website
https://www.topcoder.com/challenges/30085346 for full details. The scenario is a sensor that moves in a
straight line on a simulated road measuring gamma-ray energy levels (at apparently random times). If there
is a radiological source present, it emits energy according its energy spectra. This is obfuscated by the
presence of background radiation sources and reflections from the urban environment. For a set of testing
runs, the objective is to determine: detect if there is a radiological source in the run, identify the source
(1-6 sources each with shielded or non-shielded profiles), and locate the time at which the sensor was closest
to the source.

The competition organizers have generated data from thousands of runs that mimic what would be acquired
by a 2× 4× 16 NaI(Tl) detector moving down a simplified street in a mid-sized U.S. city. Each run has been
designed so that no source is located within the first 30 seconds of measurements, though the first 30 seconds
could include events associated with gamma rays arising from an extraneous source located farther along the
street.

2 Method Overview
2.1 Scan Statistic
Let SourceID = k, where k = 0 implies no source and k ∈ {1.0, 1.1, 2.0, 2.1, . . . , 6.0, 6.1} corresponds to one
of the 6 radiological sources without shielding (x.0) and with shielding (x.1). Let τ ≥ 30 be the time (in secs)
when the sensor is closest to the source. Note: the contest stated that the source would not be located within
the first 30 seconds.

For each run, H0 is the null hypothesis of no source (i.e., k = 0) and H(k, τ) (for k ∈ K and τ ≥ 30) be the
hypothesis that the source is k and the sensor is closest to the source at time τ .

Let Λ(k, τ) be the likelihood ratio:

Λ(k, τ) = Pr(Data | H(k, τ))
Pr(Data | H0)

The generalized likelihood ratio (or scan statistic) plugs in the MLEs for k and τ

Λ∗ = maxk,τ Pr(Data | H(k, τ))
Pr(Data | H0)

where the decision would be to choose H(k̂, τ̂), the MLE, when Λ∗ is suitably large. We can find the best
threshold to be the one that maximizes performance over the training data (or hold out set).

2.1.1 Likelihood Ratio

For a run with n observations, the likelihood ratio (assuming independence between observations conditional
on model parameters) is

1
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Λ(k, τ) = Pr(Data | H(k, τ))
Pr(Data | H0) (1)

=
n∏

i=1

f(xi|H(k, τ))
f(xi|H0) (2)

which is the product of density ratios at the observations x1, . . . , xn. The null density, f(xi|H0), can be
directly estimated from the training data (see below for details). However the density f(xi|H(k, τ)) depends
on how likely xi has come from source k that is located at time τ . That is, even if a source is nearby the
sensor, it could still receive observations from the background.

Consider a single observation xi (the recorded energy at time ti). If this observation actually came from
Source k, then the (log) ratio

rik = log fk(xi)
f0(xi)

,

where fk(xi) = f(xi | Hk) is the density/pmf from source k (estimated from the training data) and
f0(xi) = f(xi | H0) is the density from the background, is expected to be greater than zero. However if it
came from the background (e.g. H0), then rik expected to be less than zero.

A formal way to deal with this is to model f(xi|H(k, τ)) as a statistical mixture

f(xi|H(k, τ)) = fk(xi)πi(τ) + f0(xi)(1− πi(τ))

where πi(τ) is the probability that an observation at time ti would receive a measurement from a source
location at time τ . Applying this to the density ratios in (2) we get

f(xi|H(k, τ))
f(xi|H0) = fk(xi)πi(τ) + f0(xi)(1− πi(τ))

f0(xi)

= fk(xi)
f0(xi)

πi(τ) + (1− πi(τ))

This could be estimated using, e.g., EM, in a mixture model formulation but with with some sort of prior
on the πi(τ) according to knowledge about how far a source will emit radiation. Since I had no idea about
this and again (alas), limited time, I dropped this idea for now and focused on a computationally faster and
simpler approach.

We used the statistic Rik = max{0, rik} to measure the evidence that observation i was from source k. The
lower threshold at 0 limits the variability in the statistic and focuses attention on the observations that are
more likely to be seen from the source. Building off this statistic, we estimated the likelihood ratio in (2) as

S(k, τ, h) = log
(

Λ̂(k, τ)
)

= K(ti − τ ;h)Rik

which is in the form of a kernel regression where K(ti − τ ;h) is a Gaussian kernel with bandwidth (standard
deviation) h. The idea is that if the source is location at time τ , then it will produce the most observations at
times close to τ so we weight the R’s according to how far they are away from τ . In practice, we estimated
this at a range of τ ’s spaced no more than 0.025 seconds apart. And choose the value that gives the largest
score: S̃(k, h) = maxτ S(k, τ, h).

Considered bandwidths of H = {0.5, 0.75, 1, 1.25, 1.5}.

2
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2.1.2 Back to the scan statistic

One the likelihood ratios are estimated the next step is to determine if H0 should be rejected and, if so,
estimate k, τ . One problem with using S̃(k, h) is that its variance may differ over k and h. Thus, if not
accounted for the model may produce too many false alarms and over attribute to certain sources.

To help rectify this, we estimated the mean, µ0(k, h), and standard deviation, σ0(k, h), of S̃(k, h) when the
data are generated from H0. Then we used the standardized score,

Z(k, h) = S̃(k, h)− µ0(k, h)
σ0(k, h)

that will more correctly treat each k and h equally.

Finally, our scan statistic for a run is
T = max

k∈K,h∈H
Z(k, h)

and the estimates for source and event time are

(k̂, τ̂) = arg max
k∈K,h∈H

Z(k, h)

2.1.3 Threshold for hypothesis testing

We reject the null of no source if T ≥ φ, for some threshold φ.

While the contest description stated that the distributions in the test data were the same as in the training
data, it wasn’t clear if that also applied to the distribution of sources and null runs. That is, do we expect
50% of runs to be null? Because this wasn’t given I opted to set the threshold, φ by optimizing on the public
scoreboard. Not ideal, but I didn’t see there was an alternative without being given more info.

2.1.4 Thoughts

There are numerous ways to improve this model. It seemed like the sensor speed should be important. A
Bayesian approach certainly has the potential to do better, especially in regard to the timing of the source
(which has a clear shape). I only used the training runs data for the null runs; this had to be very limiting.
There are numerous ways I can think to use the training runs that contain a source. And numerous other
notes I have taken and hope to get time to pursue in the near future.

2.1.5 Remainder of the document

The remainder walks through the details of each step. All work was done in R, using the packages of
tidyverse, KernSmooth, and ks.

3
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3 Data Structure
We assume the following directory structure:

- data
- training

- 100001.csv
- 100002.csv
- ...
- 109700.csv

- testing
- 200001.csv
- ...
- 215840.csv

- mydata
- SourceData.csv
- trainingAnswers.csv

- models.R
- score-testdata.R

This required unzipping sourceInfo.zip and extracting SourceInfov3\SourceData.csv as well as untaring
and extracting all the runs files from training.tar.gz and testing.tar.gz.

4
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4 Source Density
The first step in our process is to estimate the density of the energy in all 12 possible sources (6 source types
and shielded/unshielded). We were provided the energy spectra for 5 of the 6 source types (the 6th had to
be estimated). This turned out to be the binned counts (2 keV bin widths) in some sort of ideal condition
(source is 1 meter away from the center of the detector in a vacuum).

4.1 Source Data
The Source Data is contained in the sourceInfo.zip file. Specifically, the file SourceInfov3\SourceData.csv
is the actual data.

If a source is present in a run, it will be one of six types (plus a null):

SourceID Source Type
0 No Source
1 HEU: Highly enriched uranium
2 WGPu: Weapons grade plutonium
3 131I: Iodine, a medical isotope
4 60Co: Cobalt, an industrial isotope
5 99mTc: Technetium, a medical isotope
6 A combination of 99mTc and HEU

Energy spectra for each source type are shown below for a significant quantity of source types 1 and 2 and 1
microcurie (µCi) for source types 3-5. In each figure, the solid curve shows the unshielded spectrum while
the dashed curve shows the spectrum with 1 cm of lead shielding. The plots show sources 1 meter away from
the center of the detector in a vacuum.
Source = read_csv("data/SourceData.csv")

ggplot(Source, aes(PhotonEnergy, CountRate, color=factor(SourceID),
linetype=factor(Shielding))) +

geom_line() +
facet_wrap(~paste(SourceID, SourceType, sep="-"), nrow=3) +
scale_y_log10(limits=c(10^(-10), 10^6)) +
guides(color = FALSE, linetype=FALSE)

5

201



5−99mTc

3−131I 4−60Co

1−HEU 2−WGPu

0 1000 2000 3000 4000

0 1000 2000 3000 4000

1e−07

1e−03

1e+01

1e+05

1e−07

1e−03

1e+01

1e+05

1e−07

1e−03

1e+01

1e+05

PhotonEnergy

C
ou

nt
R

at
e

4.2 Estimating the Source Density
We actually treated the energy as discrete values and estimated the pmf using frequency histograms. The
first step is to shift the value in PhotonEnergy back 1 to the bin midpoint.
Source = read_csv("data/SourceData.csv") %>%

mutate(PhotonEnergy = PhotonEnergy-1)

The next step is to make a function to linearly interpolate the intensity at 0.5 keV increments and rescale by
summing over the total intensity to convert to a proper probability mass function.
approx_df <- function(df, at=seq(11, 4001, by=.5)){

tmp = approx(x=df$PhotonEnergy, y=df$CountRate, xout=at,
rule=2) # constant at end points

tmp$y = pmax(0, tmp$y) # ensure non-negative
as_tibble(tmp) %>% transmute(energy=x, f=y/sum(y))

}

4.2.1 Estimating Source 6

We were not provided the energy spectra for source 6, but told it was “a combination of 99mTc and HEU”.
Without time to explore this any further, I just made it a 50-50 mix of the pmf from the two sources (Source
1 and 5).
w = .50 # proportion from source 1

Source6 = Source %>%
filter(SourceID %in% c(1, 5)) %>%
## Standardize
group_by(SourceID, Shielding) %>%

6
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mutate(CountRate = CountRate/sum(CountRate)) %>% # standardize first
group_by(Shielding, PhotonEnergy) %>%
summarize(CountRate = CountRate[SourceID==1]*w + CountRate[SourceID==5]*(1-w)) %>%
add_column(SourceType="HEU+99mTc", SourceID=6L, .before=1) %>%
ungroup()

Source = bind_rows(Source, Source6)

4.2.2 Formatting the Density output

The density/pmf was then estimated for every source/shielding pair and converted to wide format:
#-- Estimated (standardized) density at discrete energy levels for all sources
# SourceID = 'SourceID.Shielding'
S = Source %>% group_by(SourceID, Shielding) %>% do(approx_df(.)) %>%

ungroup() %>% unite(SourceID, SourceID, Shielding, sep=".") %>%
spread(SourceID, f)

head(S)

## # A tibble: 6 x 13
## energy `1.0` `1.1` `2.0` `2.1` `3.0` `3.1` `4.0` `4.1`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 11 2.18e-4 4.02e-4 5.91e-4 6.77e-4 6.57e-4 6.92e-4 3.54e-4 4.01e-4
## 2 11.5 2.18e-4 4.02e-4 5.91e-4 6.77e-4 6.57e-4 6.92e-4 3.54e-4 4.01e-4
## 3 12 2.18e-4 4.02e-4 5.91e-4 6.77e-4 6.57e-4 6.92e-4 3.54e-4 4.01e-4
## 4 12.5 2.92e-4 3.68e-4 8.01e-4 6.21e-4 6.03e-4 6.35e-4 3.25e-4 3.68e-4
## 5 13 3.67e-4 3.33e-4 1.01e-3 5.65e-4 5.48e-4 5.77e-4 2.96e-4 3.35e-4
## 6 13.5 4.41e-4 2.99e-4 1.22e-3 5.09e-4 4.94e-4 5.20e-4 2.67e-4 3.02e-4
## # ... with 4 more variables: `5.0` <dbl>, `5.1` <dbl>, `6.0` <dbl>,
## # `6.1` <dbl>

4.2.3 Thoughts

I didn’t have time to explore the impact of intensity/rate. So I converted it all to a density and hoped that
the overall rate varies more by the run factors (distance in road, buildings, etc.) that ignoring the rate won’t
harm too much in the prediction of source.

5 Null (No Source) Density
In order to use my intended test statistic, I also needed to estimate the null density, or the density of the
background radiation when there was no source present.

First, I had to load the runs data that corresponded to no source. This required accessing the
trainingAnswers.csv file which contains the solutions to the training runs.
runs = read_csv("data/trainingAnswers.csv", col_types="ccd")

These are the First 6 rows of trainingAnswers.csv:
head(runs) %>% knitr::kable()

RunID SourceID SourceTime
100001 0 0
100002 0 0
100003 0 0
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RunID SourceID SourceTime
100004 0 0
100005 0 0
100006 0 0

The RunID’s with SourceID = 0 correspond to the runs with no source.

The next step was to extract a random 100 runs.
#-- Set data dir
data.dir = "data/training"

#-- Sample 100 null runs
set.seed(2019)
RunID = runs %>% filter(SourceID == 0) %>% pull(RunID) %>%

sample(size=100) %>% sort()

Y = tibble()
tt = LAM = numeric(length(RunID))
for(id in RunID){

f = paste0(file.path(data.dir, id), ".csv")
X = read_csv(f, col_names=FALSE, col_types="nn") %>%

transmute(energy=X2) %>% count(energy) %>%
add_column(RunID=id)

Y = bind_rows(Y, X)
}

Due again to time constraints, I just aggregated the energy values over all times in all runs and didn’t think
about the uncertainty in this.
Y2 = Y %>% group_by(energy) %>% summarize(n = sum(n))

To help smooth over sparse regions, I then used kernel density estimation to make estimates at every 0.5
energy units increments (same as for the known Sources) and then converted that estimate to a pmf in the
same way that we did for the other Sources.
m0 = ks::kde(Y2$energy, h=1, w=Y2$n,

eval.points=seq(11, 4001, by=.5),
positive=FALSE) %>%
{tibble(PhotonEnergy=.$eval.points, density=.$estimate)}

#-- Baseline (standardized) density
B = approx_df(rename(m0, CountRate=density))

This created a density/pmf estimate from the background sources.
head(B) %>% knitr::kable()

energy f
11.0 0.0001295
11.5 0.0001417
12.0 0.0001539
12.5 0.0001662
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energy f
13.0 0.0001784
13.5 0.0001906

5.0.1 Thoughts

There was so much unexplored here! I initially expected that the runs where along the same street and no we
could use position/location information to model the uncertainty in the background radiation. Reading the
contest description seemed to imply that all runs were on different roads so there was no way to connect a
run in the training data to a run in the test data. If time permitted, I would have tried to match the first 30
seconds of test runs to some training runs to try to identify the road. There was also an issue about sensor
speed, which I also didn’t have time to explore.

The variability in the background radiation was just ignored. But I did do some initial plotting of the
background density across runs and found some substantial variation. Unfortunately, I didn’t have the time
to explore how to incorporate this.

6 Test Statistics
The value Rik = max{0, rik} can be calculated in advance to enable a quick look up at run time
#-- Get density Ratios

dens_ratio <- function(f.k, f, eps=1e-20){
logr = log(f.k + eps) - log(f + eps) # add small eps so f is not too close to 0
pmax(0, logr) # assume negative values imply non-source

}

#-- Matrix of log density ratio
R = left_join(S, B, by="energy") %>%

mutate_at(vars(-energy, -f), function(f.k) dens_ratio(f.k, .$f)) %>%
select(-f)

#-- score_run()
#---------------------------------------------------------------------#
# Assigns a log density ratio score to every observation
#
# Because we only evaluate energy levels at discrete values, the energy
# is rounded to the nearest integer and constrained to be within the
# range of 11 through 4001.
# Then the log density ratio score, for every source, is retrieved for
# the energy levels in the runs.
#---------------------------------------------------------------------#
score_run <- function(X, R){

X %>% mutate(energy = round(energy/.5)*.5, # round to 1/2
energy = pmax(energy, 11), # ensure at least 11
energy = pmin(energy, 4001)) %>% # ensure at most 4001

left_join(R, by="energy")
}

The value S(k, τ, h) is the smoothed values of R over time. The following function calculates this:
#-- smooth()
#---------------------------------------------------------------------#
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# Run kernel regression on the log density ratios
#
# Main idea is to find the time point that has the largest log density
# score, which indicates the sensor is close to a specific source.
# Inputs:
# x: vector of times
# Y: matrix of log density scores. One column per source.
# bw: bandwidth for kernel smoothing. I think its sd of normal kernel,
# this wasn't initially apparent from the locpoly() function
# ngrids: number of grid points at which to return estimates. This is
# only set to reduce time for computation. The default is to calculate
# every .05 seconds.
# Outputs:
# matrix with:
# - first column the times at which estimate were made
# - other columns for each SourceID
# Notes:
# - requires KernSmooth function locpoly()
# - to better identify the time the source is closest, we may want
# to up ngrids?
# - only returns values in [30, max(T)-4] seconds.
# Since no event <30 and edge effects can impact this implementation
# restrict source to be located within 4 seconds of end of run.
#---------------------------------------------------------------------#

smooth <- function(x, Y, bw=2, ngrids=NULL){
xrng = c(25, max(x)) # no sources within first 30 seconds
if(is.null(ngrids)) ngrids = 1+min(max(diff(xrng)/.025, 2500),6000) %>% ceiling()
YHAT = matrix(0, ngrids, ncol(Y)); colnames(YHAT) = colnames(Y)
for(j in 1:ncol(Y)){

y = Y[,j,drop=TRUE]
lp = KernSmooth::locpoly(x, y, bandwidth=bw, gridsize=ngrids,

degree=1,
range.x=xrng, truncate=FALSE)

YHAT[,j] = lp$y
}
ok = (lp$x >= 30.0 & lp$x <= (max(x)-4) )
cbind(x=lp$x[ok], YHAT[ok,])

}

6.1 Standardization
The value Z(τ, h) is obtained by standardizing S̃(τ, h), in a Z-score fashion, by subtracting the mean and
standard deviation estimated from null (no source) runs. We used a sample of 900 runs to estimate.
#---------------------------------------------------------------------#
#-- Estimate mu_0 and sigma_0
# Estimate the mean and standard deviation of the test statistics
# under some random runs from the null model
#---------------------------------------------------------------------#

#-- Set directory of training "runs" data
data.dir = "data/training"
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#-- Sample runs
n.sample = 900
set.seed(2019)
RunID = runs %>% filter(SourceID == 0) %>% pull(RunID) %>%

sample(size=n.sample) %>% sort()

#-- Set bandwidths
BW = c(.5, .75, 1, 1.25, 1.5)

#-- Evaluate Runs
OUT = tibble()

pb = progress_estimated(n.sample)
for(id in RunID){

#-- Read in runs data
f = paste0(file.path(data.dir, id), ".csv")
tau = filter(runs, RunID == !!id) %>% pull(SourceTime)
X = read_csv(f, col_names=FALSE, col_types="nn") %>%

transmute(time = cumsum(X1)/10^6, energy=X2)

#-- Score runs
A = score_run(X, R)
for(j in 1:length(BW)){

sm = smooth(A$time, select(A, -time, -energy), bw=BW[j])
tau.hat = sm[apply(sm[,-1], 2, which.max),1]
score = apply(sm[,-1], 2, max)
out = tibble(runid=id, bw=BW[j], SourceID=colnames(sm)[-1], true.source=0,

tau.hat, dtau = tau - tau.hat,
score)

OUT = bind_rows(OUT, out)
}
pb$tick()$print()

}

#-- Estimate distribution of score/Z under the null of no source
Z = OUT %>% group_by(SourceID, bw) %>%

summarize(mu = mean(score), sd=sd(score))

head(Z) %>% knitr::kable()

SourceID bw mu sd
1.0 0.50 0.2943204 0.0114164
1.0 0.75 0.2829799 0.0095228
1.0 1.00 0.2766328 0.0084592
1.0 1.25 0.2724958 0.0078184
1.0 1.50 0.2695023 0.0072691
1.1 0.50 0.2718233 0.0125629
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6.2 Scoring the Test Runs
The test data is in the file testing.tar.gz and contains the time and energy for 15840 runs.
#-- Settings
data.dir = "data/testing"

ANS = read_csv("data/submittedAnswers.csv")

#-- Set bandwidths
BW = c(0.5, 0.75, 1, 1.25, 1.5)

#-- Evaluate Runs
OUT = tibble()

pb = progress_estimated(nrow(ANS))
for(i in 1:nrow(ANS)){

#-- Read in runs data
runid = ANS$RunID[i]
f = paste0(file.path(data.dir, runid), ".csv")
X = read_csv(f, col_names=FALSE, col_types="nn") %>%

transmute(time = cumsum(X1)/10^6, energy=X2)

#-- Score runs
A = score_run(X, R)

out.j = tibble()
for(j in 1:length(BW)){

sm = smooth(A$time, select(A, -time, -energy), bw=BW[j])
tau.hat = sm[apply(sm[,-1], 2, which.max),1]
score = apply(sm[,-1], 2, max)
out = tibble(runid, bw=BW[j], # runid=id

SourceID=colnames(sm)[-1],
tau.hat,
score)

out.j = bind_rows(out.j, out)
}
out = out.j %>% left_join(Z, by=c("bw", "SourceID")) %>%

mutate(Z = (score - mu)/sd) %>%
group_by(SourceID) %>%
## Use bw with *max* Z
summarize(

runid = runid[1],
tau.hat = tau.hat[which.max(Z)],
bw = bw[which.max(Z)],
Z = max(Z),
score = score[which.max(Z)]) %>%

filter(Z == max(Z)) %>%
select(runid, bw, SourceID, tau.hat, score, Z)
OUT = bind_rows(OUT, out)

pb$tick()$print()
}

Finally, a threshold is selected and all test runs are assigned a source and time (if source is not 0).
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#-- Make submission data

thres = 2.21

solution = OUT %>% mutate(source = Z >= thres) %>%
mutate(runid = ANS$RunID) %>% # made mistake in above code
mutate(SourceID = stringr::str_sub(SourceID, 1, 1),

SourceID = ifelse(source, SourceID, 0L),
SourceTime = ifelse(source, tau.hat, 0.00)) %>%

select(RunID = runid, SourceID, SourceTime)
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Detecting Radiological Threats in 
Urban Areas 

Author: ZFTurbo   
Provisional Score: 78.64456  
Final score: 68.63696 

Requirements 
Python 3.5 and GPU based system with nvidia-docker installed. 

Solution overview 
Solution consists of 4 neural net models. Final solution file is the ensemble of predictions of 
these 4 models. 
 
Model 1: It’s segmentation model with UNET based decoder and ResNet50 as backbone, 
which is constructed using Convolution1D (instead of known version of ResNet50 for image 
classification task, where Convolution2D is used). It also has additional classification block 
which predicts class (one of 0, 1, 2, 3, 4, 5, 6).  
Input size: (32768, 3)  
Output 1 size: 32768 
Output 2 size: 7 
 
Model 2: Classification model with ResNet50 backbone which constructed using 
Convolution1D. It has 2 outputs first predict location of source (if any), second predicts type of 
source.  
Input 1 size: (32768, 3) 
Input 2 size: 16 
Output 1 size: 128 
Output 2 size: 7 
 
Model 3: Classification model with DenseNet121 backbone which constructed using 
Convolution1D. It has 2 outputs first predict location of source (if any), second predicts type of 
source.  
Input 1 size: (16384, 3)  
Input 2 size: 16 
Output 1 size: 128 
Output 2 size: 7 
 
Model 4: Recurrent neural net model based on bidirectional GRU layers with Attention block. 
It has 2 outputs first predict location of source (if any), second predicts type of source.  
Input 1 size: (512, 192) 
Input 2 size: 16 
Output 1 size: 128 

J 12th Place Writeup: ZFTurbo
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Output 2 size: 7 
 

- All models trained on raw data provided in CSV files without rescaling or normalization.  
- There are 3 stacked waveforms given for model 1-3: timing, energy and normed energy 

(energy / timing). For last RNN model it also reshaped to (512, 64*3). 
- Only part of original waveform is used by each model. Third model takes 16384 

consecutive points, others take 32768 consecutive  points. 
 
Note 1: 2nd input for models 2-4 contains some normalized statistics about overall waveform. 
Statistics includes: length, overall timing, minimum energy, maximum energy, mean energy, 
std energy, median energy, max timing, mean timing, std timing, median timing, normalized 
energy min, normalized energy max, normalized energy median, normalized energy mean, 
normalized energy std.  
Logic behind this is following: we give to model only part of waveform for analysis, so statistics 
about full waveform can be useful for model to have some info about scaling, mean signal on 
full waveform, etc. 
 
Note 2: My latest submit was ensemble of 4 models, but probably only single model (I think 
it’s Model 3) can give comparable or even better result comparing to ensemble. 

Training 
Training of models performed on GPU with usage of Keras module over tensorflow backend 
with Adam optimizer. I used infine batch generator.  
 

Model Batch size Learning 
rate 

Epochs Steps per 
epochs 

Patience 

Model 1 
(Unet + 
ResNet50) 

48 0.0005 200 300 50 

Model 2 
(ResNet50) 

120 0.0005 500 300 100 

Model 3 
(Densenet1
21) 

96 0.0005 250 300 60 

Model 4 
(GRU + 
Attention) 

240 0.0005 250 300 60 

Table 1.  Training parameters for models 
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Batch size is mostly limited by available GPU memory. Each batch consists of following 3 
types of cases: 

1) 50% of batch is zero parts from zero source class 
2) 25% only parts where source is far from current location 
3) 25% only parts where source is located on extracted waveform 

Inference 
Inference is made with sliding window approach. Initial waveform is cut on set of smaller 
segments with some step. Step is lower than size of waveform to have some overlapping 
segments. Typical step value equal to (input_size // 64). Then predicted waveforms 
concatenated and averaged in overlapped parts. Lower step size gives better accuracy but 
requires more time for prediction. 
 
Example of prediction from single model and single run file are shown on figure (Test: 200006): 

 
Here: blue - probability of close source, orange - probability of class 0, other colors - probability 
of classes 1-6. 
 
All models have unified format of predictions. 
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Ensemble  
Ensemble is made directly on waveforms using simple average from 4 models. Optimal 
THR=0.25 was found on validation and used on test set. If probability of source is higher than 
THR at some point then we predict non-zero class. 
 
Typical prediction from ensemble of 4 models and single run file (Test: 200006) is shown on 
figure: 
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